• 제목/요약/키워드: genetic markers

Search Result 1,474, Processing Time 0.03 seconds

Genetic Diversity and Spatial Genetic Structure of Dwarf Stone Pine in Daecheongbong Area, Mt. Seorak (설악산 대청봉 눈잣나무(Pinus pumila (Pall.) Regel) 집단의 유전다양성과 공간적 유전구조)

  • Song, Jeong-Ho;Lim, Hyo-In;Hong, Kyung-Nak;Jang, Kyung-Hwan;Hong, Yong-Pyo
    • Korean Journal of Plant Resources
    • /
    • v.25 no.4
    • /
    • pp.407-415
    • /
    • 2012
  • Pinus pumila, which occurs in the northeast Asia, is found limitedly in Daecheongbong area of Mt. Seorak in the South Korea. This population was chosen to study spatial pattern, genetic diversity and spatial genetic structure. There were 48 polymorphic and 30 monomorphic I-SSR markers. A total of 65 individuals which distributed in the study site (40 m ${\times}$ 70 m) showed weakly aggregate distribution (Aggregate Index = 0.871). A total of 40 genets were observed from 65 individuals through I-SSR genotype comparison. Proportion of distinguishable genotype (G/N), genotype diversity (D) and genotype evenness (E) were 61.5%, 0.977 and 0.909, respectively. In spite of the small number and the limited distribution, Shannon's diversity index (I = 0.567) was relatively high as compared with those of other plant species. Spatial autocorrelation using Tanimoto's distance showed that the genetic patch was established within 12 m. Based on Mantel tests, there was relatively low correlation between genetic distance and geographic distance. Therefore, it seems the P. pumila population was formed by many parent trees in early stage. For ex situ genetic conservation of P. pumila, the sampling strategy is efficient at least above 12 m between individual trees.

Preliminary search of intraspecific chloroplast DNA variation of nine evergreen broad leaved plants in East Asia

  • Lee, Jung-Hyun;Lee, Byoung-Yoon;Choi, Byoung-Hee
    • Korean Journal of Plant Taxonomy
    • /
    • v.41 no.3
    • /
    • pp.194-201
    • /
    • 2011
  • In order to acquire information on chloroplast DNA markers to evaluate the genetic diversity of evergreen broad leaved plants, we investigated the intraspecific variation of cpDNA in eight non-coding regions of nine species commonly distributed in East Asia. Although no variations were detected in psbA-trnH, rpoB-trnC, rpl16 and atpB-rbcL regions, a relatively large amount of intraspecific variations was detected in the psbC-trnS, rps16 and trnL-F regions. These results suggested that these three cpDNA markers are suitable to assess genetic diversity of the species investigated in this study. In contrast, intraspecific variations were detected in seven taxa except Hedera rhombea and Neolitsea aciculata. Neolitsea sericea and the taxa of Quercus had many polymorphic sites.

THE EFFECTS OF POPULATION SIZE AND DOMINANCE OF QUANTITATIVE TRAIT LOCI (QTL) ON THE DETECTION OF LINKAGE BETWEEN MARKERS AND QTL FOR LIVESTOCK

  • Jeon, G.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.6
    • /
    • pp.651-655
    • /
    • 1995
  • A simulation study on detection of linkage between genetic markers and QTL in backcross design was conducted. The effects of various sample sizes and the degree of QTL dominance on detention of linkage were examined by using a simple regression analysis. The results indicated that as sample size increased, the standard error of the estimated slope became smaller. When the dominance effect of QTL was complete, the estimated slope tended to be negative but was statistically not significant at all with type I error of greater than 50%. With complete linkage between genetic Marker and QTL, the estimated intercept value was smallest but the estimated slope was largest as expected. In most cases with various degree of dominance and sample sizes, when the actual recombination rate became larger, greater values were obtained for the slope except in the case of complete dominance of QTL.

Aggressiveness in Plasmopara halstedii (sunflower downy mildew)

  • Sakr, Nachaat
    • The Plant Pathology Journal
    • /
    • v.27 no.2
    • /
    • pp.110-115
    • /
    • 2011
  • Aggressiveness was studied in seven Plasmopara halstedii (sunflower downy mildew) pathotypes: 100, 300, 304, 314, 704, 710 and 714. Aggressiveness criteria including percentage infection, latent period, sporulation density and reduction of hypocotyl length (dwarfing) were analysed in one sunflower inbred line showing a high level of quantitative resistance. Genetic relationships were detected between the seven pathotypes using 12 EST-derived markers. Pathotypes 100, 300, 304 and 314 were characterized with shorter latent period and higher sporulation density than pathotypes 710, 704 and 714. All pathotypes showed high percentage infection values and caused a large reduction in seedling size except for pathotype 314 involved in dwarfing. Pathotypes 714, 704 and 314 had an intermediary genetic position between the pathotypes 100 and 710. No correlation was detected between aggressiveness traits and EST genotypes.

Development and characterization of eleven microsatellite markers for a popular pet stag beetle, Dorcus hopei (Coleoptera, Lucanidae) using paired-end Illumina shotgun sequencing

  • Han, Taeman;Kim, Seung-Hyun;Park, In Gyun;Park, Haechul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.35 no.2
    • /
    • pp.97-99
    • /
    • 2017
  • Eleven polymorphic microsatellite loci were developed and characterized for Dorcus hopei in this study. The number of alleles varied from 2 to 21. The observed heterozygosity and expected heterozygosity ranged from 0.1058 to 0.9744 and 0.0997 to 0.8941, respectively. Two loci showed low polymorphism, while the rest were highly polymorphic. Six loci deviated from Hardy-Weinberg Equilibrium. The set of markers will provide effective tools for examining the population genetic structures and be helpful for managing wild population in D. hopei.

Genetic relationships of pear germplasms using simple sequence repeat marker (SSR 마커를 이용한 배 유전자원의 유연관계)

  • Chun, Jae An;Cho, Kang Hee;Kim, Se Hee;Lee, Han-Chan;Choi, In Myong;Park, Seo Jun
    • Journal of Plant Biotechnology
    • /
    • v.43 no.4
    • /
    • pp.466-472
    • /
    • 2016
  • This study analyzed the genetic diversity of 115 pear germplasms using 15 SSR markers. Three to forty-one SSR alleles were detected for each locus with an average of 16 alleles per locus. The average availability of markers was 0.966. The average observed heterozygosity ($H_{obs}$) was 0.603 (range: 0.140 to 0.929). The average expected heterozygosity ($H_{exp}$) was 0.718 (range: 0.463 to 0.904). The average polymorphism information content (PIC) was 0.692 (range: 0.403 to 0.897). The genetic relationships of pear germplasms were classified into two major groups by geographic origins and genetic characteristics according to genetic distance. The first group was composed of European pear belonging to Pyrus communis. The second group consisted of P. pyrifolia, P. ussuriensis, P. bretschneideri, P. betulaefolia, P. calleryana, interspecific hybrids, and unclear germplasms. The results of this study suggest that genotype analysis of pear germplasms using SSR markers can identify the genetic diversity of germplasms, and can be used to provide basic information for pear breeding.

Genetic Composition of Korean Native Chicken Populations - National Scale Molecular Genetic Evaluation Based on Microsatellite Markers (초위성체 표지로 본 한국 재래닭 집단의 분자유전학적 구성)

  • Lee, Poong-Yeon;Yeon, Seong-Heum;Kim, Jae-Hwan;Ko, Yeoung-Gyu;Son, Jun-Kyu;Lee, Hee-Hoon;Cho, Chang-Yeon
    • Korean Journal of Poultry Science
    • /
    • v.38 no.2
    • /
    • pp.81-87
    • /
    • 2011
  • The study was conducted to select and optimize microsatellite (MS) markers for evaluate Korean Native Chicken (KNC) breeds in order to provide standard for the classification and breed definition of the indigenous breeds. The study also aimed to characterize and classify each KNC populations for inventory and management of avian genetic resources. A total of 462 chickens from 11 populations of chicken breeds including eight KNC breeds and three commercial chicken breeds were analyzed with 19 MS markers. KNC breeds, especially Long-Tail Chicken breeds, formed separate cluster from those commercial chicken breeds. Genetic distances between KNC populations (0.11~0.18) were relatively shorter. Genetic uniformity of KNC (except KNCR breed) (0.86~0.88) were higher than that of commercial breeds (except Cornish) (0.95~0.97). On the other hand, genetic uniformity of KNC Long Tail (KNCLT) were relatively higher (0.91~0.97). The result can be used to evaluate and manage animal genetic resources at national scale.

Comparative genetic diversity of wild and released populations of Pacific abalone Haliotis discus discus in Jeju, Korea, based on cross-species microsatellite markers including two novel loci

  • An, Hye-Suck;Hong, Seong-Wan;Kim, En-Mi;Lee, Jeong-Ho;Noh, Jae-Koo;Kim, Hyun-Chul;Park, Chul-Ji;Min, Byung-Hwa;Myeong, Jeong-In
    • Animal cells and systems
    • /
    • v.14 no.4
    • /
    • pp.305-313
    • /
    • 2010
  • Pacific abalone Haliotis discus discus is an important fisheries resource in Jeju, Korea. For basic information about its current genetic status in relation to stock enhancement, the level and distribution of genetic variation between wild and released stocks of Pacific abalone in Jeju were examined at nine cross-species microsatellite markers including the use of two novel primers. High levels of polymorphism were observed between the two populations. A total of 146 different alleles were found at all loci, with some alleles being unique. The allelic variability ranged from five to 27 in the wild population and from four to 16 in the released sample. The average observed and expected heterozygosities were estimated to be 0.74 and 0.84 in the wild sample and 0.70 and 0.78 in the released sample, respectively. Although a considerable loss of rare alleles was observed in the released sample, no statistically significant reductions were found in heterozygosity or allelic diversity in the released sample compared to the wild population. Low but significant genetic differentiation was found between the wild and released populations. These results suggest that the intensive breeding practices for stock enhancement may have resulted in a further decrease in genetic diversity, and that the cross-species microsatellite markers used in this study represent a potentially efficient means for further genetic studies, providing beneficial information for the protection and management of H. discus discus.

Genomic Heterogeneity of Chicken Populations in India

  • Rajkumar, Ullengala;Gupta, B. Ramesh;Reddy, A. Rajasekhara
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.12
    • /
    • pp.1710-1720
    • /
    • 2008
  • A comprehensive genome profiling study was undertaken based on automated genotyping and analysis of 20 microsatellite markers that involved 155 birds representing eight different populations. The distribution of microsatellite markers in each of these breeds helped us to decipher genetic heterogeneity, population genetic structure and evolutionary relationships of the present day chicken populations in India. All the microsatellite loci utilized for the analysis were polymorphic and reasonably informative. A total of 285 alleles were documented at 20 loci with a mean of 14.25 alleles/locus. A total of 103 alleles were found to be population/strain specific of which, only 30 per cent had a frequency of more than 10. The mean PIC values ranged from 0.39 for the locus ADL158 to 0.71 for loci MCW005 or ADL267 across the genomes and 0.55 in Dahlem Red to 0.71 in Desi (non-descript), among the populations. The overall mean expected and observed heterozygosity estimates for our populations were 0.68 and 0.64, respectively. The overall mean inbreeding coefficients (FIS) varied between -0.05 (Babcock) and 0.16 (Rhode Island Red). The pairwise FST estimates ranged from 0.06 between Aseel and Desi (non-descript) to 0.14 between Dahlem Red and Babcock. The Nei's genetic distance varied from 0.30 (WLH-IWD and WLH-IWF) to 0.80 (Dahlem Red and Babcock. Phylogenetic analysis grouped all the populations into two main clusters, representing i) the pure breeds, Dahlem Red and Rhode Island Red, and ii) the remaining six populations/strains. All the chicken populations studied were in the state of mild to moderate inbreeding except for commercial birds. A planned breeding is advised for purebreds to revive their genetic potential. High genetic diversity exists in Desi (non-descript), local birds, which can be exploited to genetically improve the birds suitable for backyard poultry.

Genetic diversity and population structure of mongolian wheat based on SSR markers

  • Ya, Narantsetseg;Raveendar, Sebastin;Bayarsukh, N;Ya, Myagmarsuren;Lee, Jung-Ro;Lee, Kyung-Jun;Shin, Myoung-Jae;Cho, Yang-Hee;Ma, Kyung-Ho;Lee, Gi-An
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.82-82
    • /
    • 2017
  • The production of spring wheat, the major crop in Mongolia, is accounting for 98% of the cultivated area. Collection, conservation and utilization of wheat germplasm resources play an important role in wheat breeding and production in Mongolia. Understanding genetic variability in the existing genebank accessions is important for collection and conservation of wheat germplasms. To determine the genetic diversity and population structure among a representative collection of Mongolian local wheat cultivars and lines, 200 wheat accessions were analyzed with 15 SSR markers distributed throughout the wheat genome. A total of 85 alleles were detected, with 3 to 5 alleles per locus and a mean genetic diversity value of 5.66. The average genetic diversity index was 0.68, with values ranging from 0.37 to 0.80. The 200 Mongolian wheat accessions were divided into two subgroups based on STRUCTURE, un-rooted NJ cluster and principal coordinate analyses. The results from this study will provide important information for future wheat germplasm conservation and improvement programs with Mongolian genebank.

  • PDF