• Title/Summary/Keyword: genetic markers

Search Result 1,474, Processing Time 0.032 seconds

Species Identification of the Tropical Abalone (Haliotis asinina, Haliotis ovina, and Haliotis varia) in Thailand Using RAPD and SCAR Markers

  • Klinbunga, Sirawut;Amparyup, Piti;Leelatanawit, Rungnapa;Tassanakajon, Anchalee;Hirono, Ikuo;Aoki, Takashi;Jarayabhand, Padermsak;Menasveta, Piamsak
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.213-222
    • /
    • 2004
  • A randomly amplified polymorphic DNA (RAPD) analysis was used to identify the species- and population-specific markers of abalone; Haliotis asinina, H. ovina, and H. varia in Thai waters. Fifteen species-specific and six population-specific RAPD markers were identified. In addition, an 1650 bp band (UBC195) that was restricted to H. ovina from the Gulf of Thailand (east) was also found. All of the specific RAPD markers were cloned and sequenced. Twenty pairs of primers were designed and specificity-tested (N = 12 and 4 for target and non-target species, respectively). Seven primer pairs (CUHA1, 2, 4, 11, 12, 13, and 14) were specifically amplified by H. asinina DNA, whereas a single pair of primers showed specificity with H. ovina (CUHO3) and H. varia (CUHV1), respectively. Four primer pairs, including CUHA2, CUHA12, CUHO3, and CUHV1, were further examined against 216 individuals of abalone (N = 111, 73, and 32, respectively). Results indicated the species-specific nature of all of them, except CUHO3, with the sensitivity of detection of 100 pg and 20 pg of the target DNA template for CUHA2 and CUHA12 and CUHV1, respectively. The species-origin of the frozen, ethanol-preserved, dried, and boiled H. asinina specimens could also be successfully identified by CUHA2.

Study of Genetic Diversity among Simmental Cross Cattle in West Sumatra Based on Microsatellite Markers

  • Agung, Paskah Partogi;Saputra, Ferdy;Septian, Wike Andre;Lusiana, Lusiana;Zein, Moch. Syamsul Arifin;Sulandari, Sri;Anwar, Saiful;Wulandari, Ari Sulistyo;Said, Syahruddin;Tappa, Baharuddin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.2
    • /
    • pp.176-183
    • /
    • 2016
  • A study was conducted to assess the genetic diversity among Simmental Cross cattle in West Sumatra using microsatellite DNA markers. A total of 176 individual cattle blood samples was used for obtaining DNA samples. Twelve primers of microsatellite loci as recommended by FAO were used to identify the genetic diversity of the Simmental Cross cattle population. Multiplex DNA fragment analysis method was used for allele identification. All the microsatellite loci in this study were highly polymorphic and all of the identified alleles were able to classify the cattle population into several groups based on their genetic distance. The heterozygosity values of microsatellite loci in this study ranged from 0.556 to 0.782. The polymorphism information content (PIC) value of the 12 observed loci is high (PIC>0.5). The highest PIC value in the Simmental cattle population was 0.893 (locus TGLA53), while the lowest value was 0.529 (locus BM1818). Based on the genetic distance value, the subpopulation of the Simmental Cross-Agam and the Simmental Cross-Limapuluh Kota was exceptionally close to the Simmental Purebred thus indicating that a grading-up process has taken place with the Simmental Purebred. In view of the advantages possessed by the Simmental Cross cattle and the evaluation of the genetic diversity results, a number of subpopulations in this study can be considered as the initial (base) population for the Simmental Cross cattle breeding programs in West Sumatra, Indonesia.

Assessment of Population Structure and Genetic Diversity of 15 Chinese Indigenous Chicken Breeds Using Microsatellite Markers

  • Chen, Guohong;Bao, Wenbin;Shu, Jingting;Ji, Congliang;Wang, Minqiang;Eding, Herwin;Muchadeyi, Farai;Weigend, Steffen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.331-339
    • /
    • 2008
  • The genetic structure and diversity of 15 Chinese indigenous chicken breeds was investigated using 29 microsatellite markers. The total number of birds examined was 542, on average 36 birds per breed. A total of 277 alleles (mean number 9.55 alleles per locus, ranging from 2 to 25) was observed. All populations showed high levels of heterozygosity with the lowest estimate of 0.440 for the Gushi chickens, and the highest one of 0.644 observed for Wannan Three-yellow chickens. The global heterozygote deficit across all populations (FIT) amounted to 0.180 (p<0.001). About 16% of the total genetic variability originated from differences between breeds, with all loci contributing significantly to this differentiation. An unrooted consensus tree was constructed using the Neighbour-Joining method and pair-wise distances based on marker estimated kinships. Two main groups were found. The heavy-body type populations grouped together in one cluster while the light-body type populations formed the second cluster. The STRUCTURE software was used to assess genetic clustering of these chicken breeds. Similar to the phylogenetic analysis, the heavy-body type and light-body type populations separated first. Clustering analysis provided an accurate representation of the current genetic relations among the breeds. Remarkably similar breed rankings were obtained with all methods.

Genetic Characterization of Indigenous Goats of Sub-saharan Africa Using Microsatellite DNA Markers

  • Chenyambuga, S.W.;Hanotte, O.;Hirbo, J.;Watts, P.C.;Kemp, S.J.;Kifaro, G.C.;Gwakisa, P.S.;Petersen, P.H.;Rege, J.E.O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.4
    • /
    • pp.445-452
    • /
    • 2004
  • Genetic diversity of sub-Saharan African goats was assessed using 19 microsatellite markers. Breeds were sampled from eastern Africa (Maasai, Kigezi, Mubende, North West Highland, Arsi-Bale), southern Africa (Ndebele, Pafuri) and West Africa (West African Dwarf, Maure, Djallonke). European breeds (Grisons Striped, Toggenburg), Asian breeds (Mongolian Cashmere, Bandipur) and a Middle East breed (Arab) were also included. The mean number of alleles per locus and average gene diversity ranged from 5.26$\pm$0.464 (Djallonke) to 7.05$\pm$0.516 (Mubende) and from 0.542$\pm$0.036 (Pafuri) to 0.672$\pm$0.031 (Ndebele), respectively. The between breeds variation evaluated using $$G_{ST}$$ and $\theta$ were found to account for 14.6% ($\theta$) and 15.7% ($$G_{ST}$$) of the total genetic variation. The $D_{A}$ measure of genetic distance between pairs of breeds indicated that the largest genetic distance was between Pafuri and Djallonke while the lowest genetic distance was between Arsi-Bale and North West Highland. A neighbour-joining tree of breed relationships revealed that the breeds were grouped according to their geographic origins. Principal component analysis supported the grouping of the breeds according to their geographic origins. It was concluded that the relationships of sub-Saharan African goat breeds were according to their geographical locations implying that the goats of eastern Africa, West Africa and southern Africa are genetically distinct. Within each sub-region, goat populations could be differentiated according to morphological characteristics.

Analysis of Genetic Diversity of Korean Accessions of the Genus Acorus Using RAPD Markers and NIR Spectroscopy

  • Lee, Ja-Hyun;Kim, In-Seon;Lee, Seong-Gene;Rim, Kwang-Sub;Kim, Sung-Gil;Han, Tae-Ho
    • Horticultural Science & Technology
    • /
    • v.29 no.3
    • /
    • pp.232-239
    • /
    • 2011
  • The genus Acorus is known as an indigenous medicinal plant. Genetic diversity of thirteen accessions of A. calamus and eight of A. gramineus, with an accession of Colocasia antiquorum and two of Iris pseudacorus as outgroups, were evaluated using RAPD markers for cluster analysis and principal coordinate analysis, and NIR spectroscopic profiles for principal component analysis.A total of 371 polymorphic bands were obtained by using the selected 12 random primers. The genetic distances were estimated from 0.03 to 0.31 within A. calamus and from 0.03 to 0.51 within A. gramineus. The dendrogram and three-dimensional plot separated the accessions into four distinct groups (A. calamus, A. gramineus, C. antiquorum, and I. pseudacorus). Moreover, for the diversity among genus Acorus, eleven A. calamus accessions, one A. gramineus accession, and two I. pseudacorus accessions were non-destructively analyzed from their leaves by NIR spectroscopy, which discriminated Acorus accessions like the RAPD analysis. Interestingly, thirteen accessions of A. calamus were clustered into two groups based on RAPD and NIR analyses, which indicates that there are two ecotypes of A. calamus in Korea. An accession (CZ) of A. calamus with yellow stripe on leaves was closely grouped with another (CX) at a genetic distance (GD) of 0.03, which shows that the stripe trait might be generated by chimeric mutation. The genetic distance between A. calamus and A. gramineus was revealed to be farthest from 0.80 to 0.88 GD. In genus Acorus the genetic diversity and genetic variation were identified by using RAPD marker technique and non-destructive NIRs.

Genetic Diversity and Molecular Markers in Introduced and Thai Native Apple Snails (Pomacea and Pila)

  • Thaewnon-Ngiw, Bungorn;Klinbunga, Sirawut;Phanwichien, Kantimanee;Sangduen, Nitsri;Lauhachinda, Nitaya;Menasveta, Piamsak
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.493-502
    • /
    • 2004
  • The genetic diversity and species-diagnostic markers in the introduced apple snail, Pomacea canaliculata and in the native Thai apple snails; Pila ampullacea, P. angelica, P. pesmei, and P. polita, were investigated by restriction analysis of COI and are reported for the first time. Twenty-one composite haplotypes showing non-overlapping distributions among species were found. Genetic heterogeneity analysis indicated significant differences between species (P < 0.0001) and within P. pesmei (P < 0.0001) and P. angelica (P < 0.0004). No such heterogeneity was observed in Pomacea canaliculata (P > 0.0036 as modified by the Bonferroni procedure), P. ampullacea (P = 0.0824-1.000) and P. polita (P = 1.0000). A neighbor-joining tree based on genetic distance between pairs of composite haplotypes differentiated all species and indicated that P. angelica and P. pesmei are closely related phylogenetically. In addition, the 16S rDNA of these species was cloned and sequenced. A species-specific PCR for P. canaliculata was successfully developed with a sensitivity of detection of approximately 50 pg of the target DNA template. The amplification of genomic DNA (50 pg and 25 ng) isolated from the fertilized eggs, and juveniles (1, 7, and 15 d after hatching) of Pomacea canaliculata was also successful, and suggested that Pomacea canaliculata and Pila species can be discriminated from the early stages of development.

Genetic Variation of Coreoleuciscus splendidus Populations from Four Major Rivers in Korea as Assessed by RAPD PCR (RAPD PCR에 의한 4대강 쉬리 Coreoleuciscus splendidus 개체군들의 유전변이 분석)

  • Song, Ha-Yoon;Bang, In-Chul
    • Korean Journal of Ichthyology
    • /
    • v.21 no.2
    • /
    • pp.129-133
    • /
    • 2009
  • Random Amplified Polymorphic DNA (RAPD) analysis was used to investigate the genetic variations of Coreoleuciscus splendidus within and among the West Korea Subdistrict populations (in Han and Geum Rivers) and the South Korea Subdistrict populations (in Seomjin and Nakdong Rivers). Twelve random primers were employed to generate RAPD markers. All primers were produced to identify specific RAPD markers between the West and South Korea Subdistrict populations. Analyses of genetic similarity and distance among the West and South Korea Subdistrict populations of C. splendidus also revealed similar results, with low genetic similarity (0.49~0.53) and high distance value (0.63~0.71). UPGMA dendrogram based on genetic distance was also similar in results. Therefore, the West Korea Subdistrict populations and the South Korea Subdistrict populations vary in genetic structure, and C. splendidus in the South Korea Subdistrict may represent a different species.

Genetic Diversity and Phylogenetic Relationships among Microsporidian Isolates from the Indian Tasar Silkworm, Antheraea mylitta, as Revealed by RAPD Fingerprinting Technique

  • Hassan, Wazid;Nath, B. Surendra
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.29 no.2
    • /
    • pp.169-178
    • /
    • 2014
  • In this study, we investigated genetic diversity of 22 microsporidian isolates infecting tropical tasar silkworm, Antheraea mylitta collected from various geographical forest locations in the state of Jharkhand, India, using polymerase chain reaction (PCR)-based marker assay: random amplified polymorphic DNA (RAPD). A type species, NIK-1s_mys was used as control for comparison. The shape of mature microsporidians was found to be oval to elongate, measuring 3.80 to $5.10{\mu}m$ in length and 2.56 to $3.30{\mu}m$ in width. Of the 20 RAPD primers screened, 16 primers generated reproducible profiles with 298 polymorphic fragments displaying high degree of polymorphism (97%). A total of 14 RAPD primers produced 45 unique putative genetic markers, which were used to differentiate the microsporidians. Calculation of genetic distance coefficients based on dice coefficient method and clustering with un-weighted pair group method using arithmetic average (UPGMA) analysis was conducted to unravel the genetic diversity of microsporidians infecting tasar silkworm. The similarity coefficients varied from 0.059 to 0.980. UPGMA analysis generated a dendrogram with four microsporidian groups, which appear to be different from each other as well as from NIK-1s_mys. Two-dimensional distribution based on Euclidean distance matrix also revealed considerable variability among different microsporidians identified from the tasar silkworms. Clustering of few microsporidian isolates was in accordance with the geographic origin. The results indicate that the RAPD profiles and specific/unique genetic markers can be used for differentiating as well as to identify different microsporidians with considerable accuracy.

Genetic diversity of Indonesian cattle breeds based on microsatellite markers

  • Agung, Paskah Partogi;Saputra, Ferdy;Zein, Moch Syamsul Arifin;Wulandari, Ari Sulistyo;Putra, Widya Pintaka Bayu;Said, Syahruddin;Jakaria, Jakaria
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.4
    • /
    • pp.467-476
    • /
    • 2019
  • Objective: This research was conducted to study the genetic diversity in several Indonesian cattle breeds using microsatellite markers to classify the Indonesian cattle breeds. Methods: A total of 229 DNA samples from of 10 cattle breeds were used in this study. The polymerase chain reaction process was conducted using 12 labeled primers. The size of allele was generated using the multiplex DNA fragment analysis. The POPGEN and CERVUS programs were used to obtain the observed number of alleles, effective number of alleles, observed heterozygosity value, expected heterozygosity value, allele frequency, genetic differentiation, the global heterozygote deficit among breeds, and the heterozygote deficit within the breed, gene flow, Hardy-Weinberg equilibrium, and polymorphism information content values. The MEGA program was used to generate a dendrogram that illustrates the relationship among cattle population. Bayesian clustering assignments were analyzed using STRUCTURE program. The GENETIX program was used to perform the correspondence factorial analysis (CFA). The GENALEX program was used to perform the principal coordinates analysis (PCoA) and analysis of molecular variance. The principal component analysis (PCA) was performed using adegenet package of R program. Results: A total of 862 alleles were detected in this study. The INRA23 allele 205 is a specific allele candidate for the Sumba Ongole cattle, while the allele 219 is a specific allele candidate for Ongole Grade. This study revealed a very close genetic relationship between the Ongole Grade and Sumba Ongole cattle and between the Madura and Pasundan cattle. The results from the CFA, PCoA, and PCA analysis in this study provide scientific evidence regarding the genetic relationship between Banteng and Bali cattle. According to the genetic relationship, the Pesisir cattle were classified as Bos indicus cattle. Conclusion: All identified alleles in this study were able to classify the cattle population into three clusters i.e. Bos taurus cluster (Simmental Purebred, Simmental Crossbred, and Holstein Friesian cattle); Bos indicus cluster (Sumba Ongole, Ongole Grade, Madura, Pasundan, and Pesisir cattle); and Bos javanicus cluster (Banteng and Bali cattle).

Analysis of genetic diversity and structure of Mongolian horse using microsatellite markers

  • Jehyun, An;Khaliunaa, Tseveen;Baatartsogt, Oyungerel;Hong Sik, Kong
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1226-1236
    • /
    • 2022
  • Mongolian horses are one of the oldest horse breeds, and are very important livestock in Mongolia as they are used in various fields such as transportation, food (milk, meat), and horse racing. In addition, research and preservation on pure Mongolian breeds are being promoted under the implementation of the new Genetics of Livestock Resources' act in Mongolia. However, despite the implementation of this act, genetic research on Mongolian horses using microsatellites (MS) has not progressed enough. Therefore, this study was conducted to analyze the genetic polymorphism of five breeds (Gobi shankh, Tes, Gal shar, Darkhad, and Undurshil) using 14 MS markers recommended by International Society for Animal Genetics (ISAG). The mean number of alleles (MNA) was 8.29, expected heterozygosity frequency (HExp) was 0.767, observed heterozygosity frequency (HObs) was 0.752, and polymorphism information content (PIC) was 0.729. The Nei's genetic distance analysis showed that the genetic distance between Gobi shankh and Darkhad horses was the farthest, and the other three breeds, Tes, Gal shar, and Undurshil were found to be close to each other. Similarly, the principal coordinate analysis (PCoA) and factorial correspondence analysis (FCA) showed that the Gobi shankh and Darkhad horses were genetically distinct from other breeds. On the other hand, it appears that Tes, Gal shar, and Undurshil horses, which are genetically similar, most likely interbred with each other. Therefore, it is expected that these results will help the conservation of genetic resources in Mongolia and the establishment of policies related to Mongolian horses.