• Title/Summary/Keyword: genetic markers

Search Result 1,474, Processing Time 0.032 seconds

Application of DNA Test for Individual Traceability in the Brand Marketing of Korean Native Pig. (한국 재래돼지 브랜드 돈육 원산지 검증을 위한 유전자 원산지 감식 기법 활용 연구)

  • Choi, Bong-Am;Lee, Hak-Kyo;Jeon, Gwang-Joo;Oh, Jaen-Don;Choi, Il-Sin;Park, Mi-Hyun;Kong, Hong-Sik;Jung, Il-Jung;Kim, Tae-Hun;Yoon, Doo-Hak;Cho, Byung-Wook
    • Korean Journal of Organic Agriculture
    • /
    • v.12 no.2
    • /
    • pp.197-207
    • /
    • 2004
  • Identification of animals has been used with an e ar tag with dummy code and blood typing has been used for paternity and individual identification in live animals. Various genetic markers are different for breeds of pig and hence, it is necessary to identity the discrete genetic marker in korean native pig. A total of 240 pigs were used to find korean native pig population specific markers that expressed in population of korean native pigs. To identify the individual traceability, 20 animals were randomly chosen and tested for a whole process from being live to slaughter stages. The candidate genetic marker used in the study were 18 DNA microsatellites which were identified in pig genome. The number of alleles of those DNA microsatellites ranged form a minimum of 3 to maximum of 6. The heterozygote frequency rang6d from 0.44 to 0.69. Effective number of alleles for each DNA microsatellotes were 2 to 4. By choosing 6 candidate genetic markers among all, the traceability of individual identification was estimated as accurate as 99.99%(p>0.0014), nearly.

  • PDF

Assessment of genetic diversity of Prangos fedtschenkoi (Apiaceae) and its conservation status based on ISSR markers

  • Mustafina, Feruza U.;Kim, Eun Hye;Son, Sung-Won;Turginov, Orzimat T.;Chang, Kae Sun;Choi, Kyung
    • Korean Journal of Plant Taxonomy
    • /
    • v.47 no.1
    • /
    • pp.11-22
    • /
    • 2017
  • Prangos fedtschenkoi (Regel et Schmalh.) Korovin (Apiaceae) is an endemic species for mountainous Middle Asia, which is both a rare and useful plant. Organic extractions from this species are being used in pharmaceutics and cosmetology. In recent years, P. fedtschenkoi distribution area has considerably decreased, presumably, resulting from human activities such as agriculture, construction works, overgrazing and collection from wild for pharmaceutic purposes. Six populations were found in Uzbekistan and their genetic divergence and differentiation were studied with 10 inter-simple sequence repeat (ISSR) markers, selected out of 101. Totally 166 amplified ISSR fragments (loci) were revealed, of which 164 were polymorphic. Relatively moderate level of polymorphism was found at population level with polymorphic bands ranging from 27.71% to 47.59%. Mean P = 39.05%, $N_a=1.40$, $N_e=1.25$, S.I. = 0.21, and $H_e=0.14$ were revealed for all loci across six populations. AMOVA showed higher variation among populations (62%) than within them (38%). The Bayesian model determined 5 clusters, or genetic groups. The posteriori distribution of the Theta II estimator detected full model identifying high inbreeding, intensified by low gene flow (Nm = 0.3954). Mantel test confined population 6 as distinct cluster corresponding to geographic remoteness (R = 0.5137, $p{\leq}0.005$). Results were used as the bases for developing conserve measures to restore populations.

Mating System of Japanese Red Pines in Seed Orchard Using DNA Markers (DNA 표지를 이용한 채종원내 소나무의 교배양식 분석)

  • Kim, Young-Mi;Hong, Yong-Pyo;Ahn, Ji-Young;Park, Jae-In
    • Korean Journal of Plant Resources
    • /
    • v.25 no.1
    • /
    • pp.63-71
    • /
    • 2012
  • To assess parameters of mating system in seed orchard, such as outcrossing rates, number of potential pollen contributors, and degree of pollen contamination, seeds, produced in '77 plot of the Japanese red pine (Pinus densiflora S et Z) seed orchard at Anmyeon island, were collected in 2007 and analysed by nSSR and cpSSR markers. Estimates of outcrossing rates ranged from 91.2 to 100% (mean 97.7%) on the basis of the analysis of cpSSR haplotypes and from 81.6 to 100% (mean 95.3%) on the basis of the analysis of nSSR genotypes. By cross checking of both DNA markers, seeds, presumed to be products of self pollination on the basis of single marker, were confirmed as outcrossed seeds, which resulted in cumulative outcrossing rates of 98.9%. On the basis of pooled cpSSR haplotype of each seed, the number of pollen contributors and paternal contribution rates were estimated as 14.8 and 0.512, respectively. In conclusion, considering pretty high level of outcrossing rates observed in a seed orchard, good genetic potential of the seeds, produced in '77 plot of the seed orchard of Japanese red pines at Anmyeon island, may be guaranteed. Investigated results from the analysis of mating system of Japanese red pines in a '77 plot of the seed orchard may also be expected to provide useful information for the management and establishment of the seed orchard of the progressive generation.

Genetic Diversity of Finger Millet (Eleusine coracana (L.) Gaertn.) Landraces Based on EST-SSR

  • Myung Chul Lee;Yu-Mi Choi;Myoung-Jae Shin;Hyemyeong Yoon;Seong-Hoon Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.46-46
    • /
    • 2020
  • Finger millet is more nutritious than other and millets and widely cultivate in tropical regions of the world. Furthermore, it is more tolerant against biotic and abiotic stresses such as pest, drought and salt. For this reason, finger millet is one of the putative crops to introduce and cultivate on reclaimed land and prepare the global climate exchange in Korea. In present study, genetic diversity and structure of different populations of finger millet from Africa and South Asia was examined at molecular level using newly developed EST-Simple Sequence Repeat (EST-SSR) markers. In total, 46 primers produced 292 alleles in a size range of 100-500 bp and mean Polymorphism Information Content (PIC) and Marker Index (MI) were 0.372 and 1.04, respectively. 46 primers showed polymorphism and 21 primers were identified as having a PIC value above 0.5. Principal coordinates analysis and the dendrogram constructed out of combined data of both markers showed grouping of finger millet accessions to their respective area of collection. The 156 accessions were more classified into four groups, such as three groups of Africa collection and one group of Asia. Results of present study can be useful in identifying diverse accessions and management of this plant resource. Moreover, the novel SSR markers developed can be utilized for various genetic analyses in this species in future.

  • PDF

Genetic diversity and population structure of indigenous chicken of Bangladesh using microsatellite markers

  • Rashid, Muhammad Abdur;Manjula, Prabuddha;Faruque, Shakila;Bhuiyan, A.K. Fazlul Haque;Seo, Dongwon;Alam, Jahangir;Lee, Jun Heon;Bhuiyan, Mohammad Shamsul Alam
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1732-1740
    • /
    • 2020
  • Objective: The objectives of this study were to investigate the genetic diversity, population structure and relatedness among the five chicken populations of Bangladesh using microsatellite markers. Methods: A total of 161 individuals representing 5 chicken populations (non-descript Deshi [ND], naked neck [NN], hilly [HI], Aseel [AS], and red jungle fowl [JF]) were included in this study to investigate genetic diversity measures, population structure, genetic distance and phylogenetic relationships. Genotyping was performed using 16 selected polymorphic microsatellite markers distributed across 10 chromosomes. Results: The average observed and expected heterozygosity, mean number of alleles and polymorphic information content were found to be 0.67±0.01, 0.70±0.01, 10.7 and 0.748, respectively in the studied populations. The estimated overall fixation index across the loci (F), heterozygote deficiency within (FIS) and among (FIT) chicken populations were 0.04±0.02, 0.05 and 0.16, respectively. Analysis of molecular variance analysis revealed 88.07% of the total genetic diversity was accounted for within population variation and the rest 11.93% was incurred with population differentiation (FST). The highest pairwise genetic distance (0.154) was found between ND and AS while the lowest distance was between JF and AS (0.084). Structure analysis depicted that the studied samples can be categorized into four distinct types or varieties (ΔK = 3.74) such as ND, NN, and HI where AS and JF clustered together as an admixed population. The Neighbor-Joining phylogenetic tree and discriminant analysis of principal component also showed close relatedness among three chicken varieties namely AS, HI, and JF. Conclusion: The results reflected that indigenous chicken of Bangladesh still possess rich genetic diversity but weak differentiation among the studied populations. This finding provides some important insight on genetic diversity measures that could support the designing and implementing of future breeding plans for indigenous chickens of Bangladesh.

Genetic Variation of Pinus densiflora Populations in South Korea Based on ESTP Markers (ESTP 표지를 이용한 국내 소나무 집단의 유전변이)

  • Ahn, Ji Young;Hong, Kyung Nak;Lee, Jei Wan;Hong, Yong Pyo;Kang, Hoduck
    • Korean Journal of Plant Resources
    • /
    • v.28 no.2
    • /
    • pp.279-289
    • /
    • 2015
  • Genetic diversity and genetic differentiation of thirteen Pinus densiflora populations in South Korea were estimated using nine ESTP (Expressed Sequence Tag Polymorphism) markers. The numbers of allele and the effective allele were 2.2 and 1.8, respectively. The percentage of polymorphic loci (P) was 98.8%. The observed and the expected heterozygosity were 0.391 and 0.402, respectively, and the eleven populations except for Ahngang and Gangneung population were under Hardy-Weinberg equilibrium state. The level of genetic differentiation (Wright’s FST = 0.057) was higher than those of isozyme or nSSR markers. We could not find out any relationship between the genetic distance and geographic distribution among populations from cluster analysis. Also, the genetic differentiation between populations was not correlated with the geographic distance (r = 0.017 and P = 0.344 from Mantel test). From the result of FST-outlier analysis to identify a locus under selection, six loci were detected at confidence interval of 99% by the frequentist’s method. However, only three loci (sams2+AluⅠ, sams2+RsaⅠ, PtNCS_p14A9+HaeⅢ) were presumed as outliers by Bayesian method. The sams2+AluⅠ and sams2+RsaⅠlocus were originated from the sams2 gene and seemed to be the loci under balancing selection.

Genetic Diversity of a Chinese Native Chicken Breed, Bian Chicken, Based on Twenty-nine Microsatellite Markers

  • Ding, Fu-Xiang;Zhang, Gen-Xi;Wang, Jin-Yu;Li, Yuan;Zhang, Li-Jun;Wei, Yue;Wang, Hui-Hua;Zhang, Li;Hou, Qi-Rui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.2
    • /
    • pp.154-161
    • /
    • 2010
  • The level of genetic differentiation and genetic structure in a Chinese native chicken breed, Bian chicken, and two controlled chicken populations (Jinghai chicken and Youxi chicken in China) were analysed based on 29 microsatellite markers. A total of 166 distinct alleles were observed across the 3 breeds, and 32 of these alleles (19.3%) were unique to only 1 breed. Bian chicken carried the largest number of private alleles at 15 (46.9%), followed by the Jinghai chicken with 12 private alleles (37.5%). The average polymorphism information content (0.5168) and the average expected heterozygote frequency (0.5750) of the Bian chicken were the highest, and those of the Jinghai chicken were 0.4915 and 0.5505, respectively, which were the lowest. Among 29 microsatellite loci, there were 15 highly informative loci in Bian chicken, and the other 14 were reasonably informative loci. The highly informative loci in Jinghai chicken and Youxi chicken were 17 and 14 respectively. Significant deviations from the Hardy-Weinberg equilibrium were observed at several locus-breed combinations, showing a deficit of heterozygotes in many cases. As a whole, genetic differentiation among the breeds estimated by the fixation index (Fst) were at 6.7% (p<0.001). The heterozygote deficit within population (Fis) was 22.2% (p<0.001), with the highest (0.249) in Bian chicken and lowest (0.159) in Youxi chicken. These results serve as an initial step in the plan for genetic characterization and conservation of the Chinese chicken genetic resource of Bian, as well as Jinghai and Youxi chickens.

A double-labeling marker-based method for estimating inbreeding and parental genomic components in a population under conservation

  • Li, Wenting;Zhang, Mengmeng;Wang, Kejun;Lu, Yunfeng;Tang, Hui;Wu, Keliang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.12-23
    • /
    • 2020
  • Objective: The objective of a conservation program is to maintain maximum genetic diversity and preserve the viability of a breed. However, the efficiency of a program is influenced by the ability to accurately measure and predict genetic diversity. Methods: To examine this question, we conducted a simulation in which common measures (i.e. heterozygosity) and novel measures (identity-by-descent probabilities and parental genomic components) were used to estimate genetic diversity within a conserved population using double-labeled single nucleotide polymorphism markers. Results: The results showed that the accuracy and sensitivity of identity-by-state probabilities and heterozygosity were close to identity by descent (IBD) probabilities, which reflect the true genetic diversity. Expected heterozygosity most closely aligned with IBD. All common measures suggested that practices used in the current Chinese pig conservation program result in a ~5% loss in genetic diversity every 10 generations. Parental genomic components were also analyzed to monitor real-time changes in genomic components for each male and female ancestor. The analysis showed that ~7.5% of male families and ~30% of female families were lost every 5 generations. After 50 generations of simulated conservation, 4 male families lost ~50% of their initial genomic components, and the genomic components for 24.8% of the female families were lost entirely. Conclusion: In summary, compared with the true genetic diversity value obtained using double-labeled markers, expected heterozygosity appears to be the optimal indicator. Parental genomic components analysis provides a more detailed picture of genetic diversity and can be used to guide conservation management practices.

Genetic diversity and population structure of Chinese ginseng accessions using SSR markers

  • An, Hyejin;Park, Jong-Hyun;Hong, Chi Eun;Raveendar, Sebastin;Lee, Yi;Jo, Ick-Hyun;Chung, Jong-Wook
    • Journal of Plant Biotechnology
    • /
    • v.44 no.3
    • /
    • pp.312-319
    • /
    • 2017
  • The need to preserve and use plant genetic resources is widely recognized, and the prospect of dwindling plant genetic diversity, coupled with increased demands on these resources, has made them a topic of global discussion. In the present study, the genetic diversity and population structure of 73 ginseng accessions collected from six regions in China were analyzed using eight simple sequence repeat (SSR) markers. Major allele frequencies ranged between 0.38 ~ 0.78, with a mean allele frequency value of 0.571. The number of alleles discovered ranged from 3 to 10 per accession, with a mean number of 7; 56 alleles were discovered in total. Gene diversity (GD) and polymorphic information content (PIC) values were similar to each other, and they ranged from 0.36 ~ 0.77 (mean 0.588) and 0.33 ~ 0.74 (mean 0.548), respectively. Accessions were divided into three clusters based on their phylogenetic relationships and genetic similarities, and although the populations were similar, they were not classified according to the region. Regional genetic diversity was also similar, with slight differences observed based on the number of accessions per region. It is expected that the findings of the present study can provide basic data for future studies on ginseng genetic diversity and for breeding ginseng cultivars.

Genetic diversity of Saudi native chicken breeds segregating for naked neck and frizzle genes using microsatellite markers

  • Fathi, Moataz;El-Zarei, Mohamed;Al-Homidan, Ibrahim;Abou-Emera, Osama
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1871-1880
    • /
    • 2018
  • Objective: Recently, there has been an increasing interest in conservation of native genetic resources of chicken on a worldwide basis. Most of the native chicken breeds are threatened by extinction or crossing with ecotypes. Methods: Six Saudi native chicken breeds including black naked neck, brown frizzled, black, black barred, brown and gray were used in the current study. The aim of the current study was to evaluate genetic diversity, relationship and population structure of Saudi native chicken breeds based on 20 microsatellite markers. Results: A total of 172 alleles were detected in Saudi native chicken breeds across all 20 microsatellite loci. The mean number of alleles per breed ranged from 4.35 in gray breed to 5.45 in normally feathered black with an average of 8.6 alleles. All breeds were characterized by a high degree of genetic diversity, with the lowest heterozygosity found in the brown breed (72%) and the greatest in the frizzled and black barred populations (78%). Higher estimate of expected heterozygosity (0.68) was found in both black breeds (normal and naked neck) compared to the other chicken populations. All studied breeds showed no inbreeding within breed (negative inbreeding coefficient [$F_{IS}$]). The phylogenetic relationships of chickens were examined using neighbor-joining trees constructed at the level of breeds and individual samples. The neighbor-joining tree constructed at breed level revealed three main clusters, with naked neck and gray breeds in one cluster, and brown and frizzled in the second cluster leaving black barred in a separate one. Conclusion: It could be concluded that the genetic information derived from the current study can be used as a guide for genetic improvement and conservation in further breeding programs. Our findings indicate that the Saudi native chicken populations have a rich genetic diversity and show a high polymorphism.