• Title/Summary/Keyword: genetic fuzzy

Search Result 784, Processing Time 0.036 seconds

The Design of Fuzzy Controller Based on Genetic Optimization and Neurofuzzy Networks

  • Oh, Sung-Kwun;Roh, Seok-Beom
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.653-665
    • /
    • 2010
  • In this study, we introduce a neurofuzzy approach to the design of fuzzy controllers. The development process exploits key technologies of Computational Intelligence (CI), namely, genetic algorithms (GA) and neurofuzzy networks. The crux of the design methodology deals with the selection and determination of optimal values of the scaling factors of fuzzy controllers, which are essential to the entire optimization process. First, the tuning of the scaling factors of the fuzzy controller is carried out. Next, we form a nonlinear mapping for the scaling factors, which are realized by GA-based neurofuzzy networks by using a fuzzy set or fuzzy relation. The proposed approach is applied to control nonlinear systems like the inverted pendulum. Results of comprehensive numerical studies are presented through a detailed comparative analysis.

A Design of SVC RVEGA-Fuzzy Controller to Improve Dynamic Response of AC-DC System (교류-직류 시스템의 동특성 개선을 위한 SVC RVEGA-Fuzzy 제어기 설계)

  • Jeong, Hyeong-Hwan;Heo, Dong-Ryeol;Wang, Yong-Pil;Jeong, Mun-Gyu;Go, Hui-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.10
    • /
    • pp.483-494
    • /
    • 2002
  • In this thesis an optimal design technique of fuzzy logic controller using the real variable elitist genetic algorithm(RVEGA) as a supplementary control to Static Var Compensator(SVC) in order to damp oscillation in an AC-DC Dower system was proposed. Fuzzy logic controller is designed self-tuning shape of fuzzy rule and fuzzy variable using genetic algorithm based on natural selection and natural genetics. To verify the robustness of the proposed method, considered dynamic response of system by applying a load fluctuation.

The Design of Fuzzy-Sliding Mode Control with the Self Tuning Fuzzy Inference Based on Genetic Algorithm and Its Application

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.182-182
    • /
    • 2000
  • This paper proposes a self tuning fuzzy inference method by the genetic algorithm in the fuzzy-sliding mode control for a robot. Using this method, the number of inference rules and the shape of membership functions are optimized without an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. And, it is guaranteed that the selected solution become the global optimal solution by optimizing the Akaike's information criterion. The trajectory trucking experiment of the polishing robot system shows that the optimal fuzzy inference rules are automatically selected by the genetic algorithm and the proposed fuzzy-sliding model controller provides reliable tracking performance during the polishing process.

  • PDF

The Identification of Multi-Fuzzy Model by means of HCM and Genetic Algorithms (클러스터링 기법과 유전자 알고리즘에 의한 다중 퍼지 모델으 동정)

  • Park, Byoun-Jun;Lee, Su-Gu;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3007-3009
    • /
    • 2000
  • In this paper, we design a Multi-Fuzzy model by means of clustering method and genetic algorithms for a nonlinear system. In order to determine structure of the proposed Multi-Fuzzy model. HCM clustering method is used. The parameters of membership function of the Multi-Fuzzy are identified by genetic algorithms. We use simplified inference and linear inference as inference method of the proposed Multi-Fuzzy model and the standard least square method for estimating consequence parameters of the Multi-Fuzzy. Finally, we use some of numerical data to evaluate the proposed Multi-Fuzzy model and discuss about the usefulness.

  • PDF

Hybrid Genetic Algorithm Reinforced by Fuzzy Logic Controller (퍼지로직제어에 의해 강화된 혼합유전 알고리듬)

  • Yun, Young-Su
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.1
    • /
    • pp.76-86
    • /
    • 2002
  • In this paper, we suggest a hybrid genetic algorithm reinforced by a fuzzy logic controller (flc-HGA) to overcome weaknesses of conventional genetic algorithms: the problem of parameter fine-tuning, the lack of local search ability, and the convergence speed in searching process. In the proposed flc-HGA, a fuzzy logic controller is used to adaptively regulate the fine-tuning structure of genetic algorithm (GA) parameters and a local search technique is applied to find a better solution in GA loop. In numerical examples, we apply the proposed algorithm to a simple test problem and two complex combinatorial optimization problems. Experiment results show that the proposed algorithm outperforms conventional GAs and heuristics.

Design of a Fuzzy Controller Using Genetic Algorithm Employing Simulated Annealing and Random Process (Simulated Annealing과 랜덤 프로세서가 적용된 유전 알고리즘을 이용한 퍼지 제어기의 설계)

  • 한창욱;박정일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.140-140
    • /
    • 2000
  • Traditional genetic algorithms, though robust, are generally not the most successful optimization algorithm on any particular domain. Hybridizing a genetic algorithm with other algorithms can produce better performance than both the genetic algorithm and the other algorithms. In this paper, we use random process and simulated annealing instead of mutation operator in order to get well tuned fuzzy rules. The key of this approach is to adjust both the width and the center of membership functions so that the tuned rule-based fuzzy controller can generate the desired performance. The effectiveness of the proposed algorithm is verified by computer simulation.

  • PDF

Design of fuzzy logic controller using genetic algorithms for the flexible manipulator (Flexible manipulator를 위한 유전 알고리즘을 이용한 퍼지 제어기 설계)

  • 허남건;이기성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1808-1811
    • /
    • 1997
  • A position control algorithm for a flexible manipulato is stuudied. The proposed algorithm is based on a fuzzy theroy with a Steady State Genetic Algorithm(SSGA). The conventional fuzzy methods need expert's knowledges or human experiences. The SSGA, which is one of the optimization algorithms, tunes automatically the input-output membership parameters and fuzzy rules. The computer simulation is presented ot illustrate the approaches. Finally we applied a fuzzy theory with a SSGA to aposition control of a flexible manipulator.

  • PDF

Evolutionary Design Methodology of Fuzzy Set-based Polynomial Neural Networks with the Information Granule

  • Roh Seok-Beom;Ahn Tae-Chon;Oh Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.301-304
    • /
    • 2005
  • In this paper, we propose a new fuzzy set-based polynomial neuron (FSPN) involving the information granule, and new fuzzy-neural networks - Fuzzy Set based Polynomial Neural Networks (FSPNN). We have developed a design methodology (genetic optimization using Genetic Algorithms) to find the optimal structure for fuzzy-neural networks that expanded from Group Method of Data Handling (GMDH). It is the number of input variables, the order of the polynomial, the number of membership functions, and a collection of the specific subset of input variables that are the parameters of FSPNN fixed by aid of genetic optimization that has search capability to find the optimal solution on the solution space. We have been interested in the architecture of fuzzy rules that mimic the real world, namely sub-model (node) composing the fuzzy-neural networks. We adopt fuzzy set-based fuzzy rules as substitute for fuzzy relation-based fuzzy rules and apply the concept of Information Granulation to the proposed fuzzy set-based rules.

  • PDF

Semi-active seismic control of a 9-story benchmark building using adaptive neural-fuzzy inference system and fuzzy cooperative coevolution

  • Bozorgvar, Masoud;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2019
  • Control algorithms are the most important aspects in successful control of structures against earthquakes. In recent years, intelligent control methods rather than classical control methods have been more considered by researchers, due to some specific capabilities such as handling nonlinear and complex systems, adaptability, and robustness to errors and uncertainties. However, due to lack of learning ability of fuzzy controller, it is used in combination with a genetic algorithm, which in turn suffers from some problems like premature convergence around an incorrect target. Therefore in this research, the introduction and design of the Fuzzy Cooperative Coevolution (Fuzzy CoCo) controller and Adaptive Neural-Fuzzy Inference System (ANFIS) have been innovatively presented for semi-active seismic control. In this research, in order to improve the seismic behavior of structures, a semi-active control of building using Magneto Rheological (MR) damper is proposed to determine input voltage of Magneto Rheological (MR) dampers using ANFIS and Fuzzy CoCo. Genetic Algorithm (GA) is used to optimize the performance of controllers. In this paper, the design of controllers is based on the reduction of the Park-Ang damage index. In order to assess the effectiveness of the designed control system, its function is numerically studied on a 9-story benchmark building, and is compared to those of a Wavelet Neural Network (WNN), fuzzy logic controller optimized by genetic algorithm (GAFLC), Linear Quadratic Gaussian (LQG) and Clipped Optimal Control (COC) systems in terms of seismic performance. The results showed desirable performance of the ANFIS and Fuzzy CoCo controllers in considerably reducing the structure responses under different earthquakes; for instance ANFIS and Fuzzy CoCo controllers showed respectively 38 and 46% reductions in peak inter-story drift ($J_1$) compared to the LQG controller; 30 and 39% reductions in $J_1$ compared to the COC controller and 3 and 16% reductions in $J_1$ compared to the GAFLC controller. When compared to other controllers, one can conclude that Fuzzy CoCo controller performs better.

A genetic algorithm for generating optimal fuzzy rules (퍼지 규칙 최적화를 위한 유전자 알고리즘)

  • 임창균;정영민;김응곤
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.767-778
    • /
    • 2003
  • This paper presents a method for generating optimal fuzzy rules using a genetic algorithm. Fuzzy rules are generated from the training data in the first stage. In this stage, fuzzy c-Means clustering method and cluster validity are used to determine the structure and initial parameters of the fuzzy inference system. A cluster validity is used to determine the number of clusters, which can be the number of fuzzy rules. Once the structure is figured out in the first stage, parameters relating the fuzzy rules are optimized in the second stage. Weights and variance parameters are tuned using genetic algorithms. Variance parameters are also managed with left and right for asymmetrical Gaussian membership function. The method ensures convergence toward a global minimum by using genetic algorithms in weight and variance spaces.