• Title/Summary/Keyword: genetic fuzzy

Search Result 784, Processing Time 0.022 seconds

Study on Interaction of Planar Redundant Manipulator with Environment based on Intelligent Control (지능제어를 이용한 평면 여자유도 매니퓰레이터와 환경과의 상호작용에 관한 연구)

  • Yoo, Bong-Soo;Kim, Sin-Ho;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.388-397
    • /
    • 2009
  • There are many tasks which require robotic manipulators interaction with environment. It consists of three control problems, i.e., position control, impact control and force control. The position control means the way of reaching to the environment. The moment of touching to the environment yields the impact control problem and the force control is to maintain the desired force trajectory after the impact with the environment. These three control problems occur in sequence, so each control algorithm can be developed independently. Especially for redundant manipulators, each of these three control problems has been important independent research topic. For example, joint torque minimization and impulse minimization are typical techniques for such control problems. The three control problems are considered as a single task in this paper. The position control strategy is developed to improve the performance of the task, i.e., minimization of the individual joint torques and impulse. Therefore, initial conditions of the impact control problem are optimized at the previous position control algorithm. Such a control strategy yields improved result of the impact control. Similarly, the initial conditions for the force control problem are indirectly optimized by the previous position control and impact control strategies. The force control algorithm uses the individual joint torque minimization concept. It also minimizes the force disturbances. The simulation results show the proposed control strategy works well.

Analysis of Automatic Meter Reading Systems (IBM, Oracle, and Itron) (국외 상수도 원격검침 시스템(IBM, Oracle, Itron) 분석)

  • Joo, Jin Chul;Kim, Juhwan;Lee, Doojin;Choi, Taeho;Kim, Jong Kyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.264-264
    • /
    • 2017
  • 국외의 상수도 원격검침 시스템 내 데이터 전송방식은 도시 규모, 계량기의 밀도, 전력공급 여부 및 통신망의 설치 여부 등을 종합적으로 고려하여 결정되었다. 대부분의 스마트워터미터 제조업체들은 계량기의 부호기가 공급하는 판독 내용(데이터)을 전송할 검침단말기와 근거리 통신망(neighborhood area network)을 연계하여 개발 및 판매하였으며, 자체 소유 통신 프로토콜을 사용하여 라디오 주파수(RF) 통신 기술을 사용하고 있다. 광역통신망(wide area network)의 경우, 노드(말단의 계량기 및 센서)들과 이에 연결된 통신망 들을 포함한 네트웍의 배열이나 구성이 스타(star), 메쉬(mesh), 버스(bus), 나무(tree) 등의 형태로 통신망이 구성되어 있으나, 스타와 메쉬형 통신망 구성형태가 가장 널리 활용되는 것으로 조사되었다. 시스템 통합운영관리 업체들인 IBM, Oracle, Itron 등은 용수 인프라 관리 또는 통합네트워크 솔루션 등의 통합 물관리 시스템(integrated water management system)을 개발하여 현장적용을 하고 있으며, 원격검침 시스템을 통해 고객들의 현재 소비량과 과거 누적 소비량, 누수 감지 서비스 및 실시간 요금 고지 등을 실시간으로 웹 포털과 앱을 통해 제공하고 있다. 또한, 일부 제조업체들은 도시 용수공급/소비 관리자가 주민의 용수사용량을 모니터링하여 일평균 용수사용량 및 사용 경향을 파악하고, 누수를 검지하여 복구 및 용수 사용 지속가능성 지수를 제시하고, 실시간으로 주민의 용수사용량 관련 데이터를 모니터링하여 용수공급의 최적화를 위한 의사결정지원 서비스를 용수공급자에게 제공하고 있다. 최근에는 인공지능을 활용해 가정용수의 용도별(세탁용수, 화장실용수, 샤워용수, 식기세척용수 등) 사용량 곡선을 패터닝하여 profiling 기법을 도입해, 스마트워터미터에서 용수사용량이 통합되어 검지될 시 용수사용량의 세부 용도별 re-profiling 기법을 도입하여 가정용수내 과소비되는 지점을 도출 후 절감을 유도하는 기술이 개발 중이다. 또한, 미래 용수 사용량 예측을 위해 다양한 시계열 자료를 분석하는 선형 종속 모형(자기회귀모형, 자기회귀이동평균모형, 자기회귀적분이동평균모형 등)과 비선형 종속 모형(Fuzzy Logic, Neural Network, Genetic Algorithm 등)을 활용한 예측기능이 구축되어 상호 비교하여 최적의 용수사용량 예측 도구를 제공되고 있다.

  • PDF

Evaluation of Salt Tolerance in Sorghum (Sorghum bicolor L.) Mutant Population

  • Ye-Jin Lee;Baul Yang;Woon Ji Kim;Juyoung Kim;Soon-Jae Kwon;Jae Hoon Kim;Joon-Woo Ahn;Sang Hoon Kim;Haeng-Hoon Kim;Chang-Hyu Bae;Jaihyunk Ryu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.38-38
    • /
    • 2023
  • Sorghum (Sorghum bicolor L.) is a promising biomass crop with a high lignocellulose content. This study aimed to select high salt-tolerance sorghum lines for cultivation on reclaimed land. Using 7-day seedlings of the sorghum population consisted of 71 radiation-derived mutants (M2 to M6) and 33 genetic resources, survival rate (SR), plant height (PH), root length (RL), fresh weight (FW), and chlorophyll content (CC) were measured for two weeks after 102 mM (0.6%) NaCl treatment. Furthermore, the characteristics of the sorghum population were confirmed using correlation analysis, PCA (principal component analysis), and the FCE (fuzzy comprehensive evaluation) method. Under 102 mM NaCl conditions, SR ranged from 4.9 (IS645-200-6) to 82.4% (KLSo79125-200-1), with an average of 49.9%. PH varied from 7.5 (Mesusu-100-2) to 33.2 cm (DINE-A-MITE-100-2-10), with an average of 20.4 cm. RL ranged from 1.0 (IS645-200-1) to 17.0 cm (30-100-2), with an average of 7.7 cm. FW varied from 0.1 (IS645-200-6) to 4.5 g/plant (DINE-A-MITE-100-2-10), with an average of 2.1 g/plant. CC ranged from 0.9 (DINE-A-MITE-100-2-2) to 3.1 mg/g (IS12937), with an average of 1.7 mg/g. An overall positive correlation, with SR and FW (r = 0.86, P < 0.01), and FW and CC (r = 0.79, P < 0.01), was shown by correlation analysis. Among the five traits, two principal components were extracted by PCA analysis. PC1 was significantly associated with FW, while PC2 was highly involved with RL. To evaluate the salt tolerance level of the sorghum population when an FCE based on trait data was performed, MFV (membership function value) was 0.68. As a result of compiling the MFV of each line, eight lines with MFV > 0.68 were selected. Ultimately, the radiation-derived mutant lines, DINE-A-MITE-100-2-10 and DINE-A-MITE-100-2-12 were selected as salt-tolerant sorghum lines. The results are expected to inform salt-tolerant sorghum breeding programs, and the high salt-tolerance sorghum lines might be advantageous for cultivation on reclaimed land.

  • PDF

Dynamic forecasts of bankruptcy with Recurrent Neural Network model (RNN(Recurrent Neural Network)을 이용한 기업부도예측모형에서 회계정보의 동적 변화 연구)

  • Kwon, Hyukkun;Lee, Dongkyu;Shin, Minsoo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.139-153
    • /
    • 2017
  • Corporate bankruptcy can cause great losses not only to stakeholders but also to many related sectors in society. Through the economic crises, bankruptcy have increased and bankruptcy prediction models have become more and more important. Therefore, corporate bankruptcy has been regarded as one of the major topics of research in business management. Also, many studies in the industry are in progress and important. Previous studies attempted to utilize various methodologies to improve the bankruptcy prediction accuracy and to resolve the overfitting problem, such as Multivariate Discriminant Analysis (MDA), Generalized Linear Model (GLM). These methods are based on statistics. Recently, researchers have used machine learning methodologies such as Support Vector Machine (SVM), Artificial Neural Network (ANN). Furthermore, fuzzy theory and genetic algorithms were used. Because of this change, many of bankruptcy models are developed. Also, performance has been improved. In general, the company's financial and accounting information will change over time. Likewise, the market situation also changes, so there are many difficulties in predicting bankruptcy only with information at a certain point in time. However, even though traditional research has problems that don't take into account the time effect, dynamic model has not been studied much. When we ignore the time effect, we get the biased results. So the static model may not be suitable for predicting bankruptcy. Thus, using the dynamic model, there is a possibility that bankruptcy prediction model is improved. In this paper, we propose RNN (Recurrent Neural Network) which is one of the deep learning methodologies. The RNN learns time series data and the performance is known to be good. Prior to experiment, we selected non-financial firms listed on the KOSPI, KOSDAQ and KONEX markets from 2010 to 2016 for the estimation of the bankruptcy prediction model and the comparison of forecasting performance. In order to prevent a mistake of predicting bankruptcy by using the financial information already reflected in the deterioration of the financial condition of the company, the financial information was collected with a lag of two years, and the default period was defined from January to December of the year. Then we defined the bankruptcy. The bankruptcy we defined is the abolition of the listing due to sluggish earnings. We confirmed abolition of the list at KIND that is corporate stock information website. Then we selected variables at previous papers. The first set of variables are Z-score variables. These variables have become traditional variables in predicting bankruptcy. The second set of variables are dynamic variable set. Finally we selected 240 normal companies and 226 bankrupt companies at the first variable set. Likewise, we selected 229 normal companies and 226 bankrupt companies at the second variable set. We created a model that reflects dynamic changes in time-series financial data and by comparing the suggested model with the analysis of existing bankruptcy predictive models, we found that the suggested model could help to improve the accuracy of bankruptcy predictions. We used financial data in KIS Value (Financial database) and selected Multivariate Discriminant Analysis (MDA), Generalized Linear Model called logistic regression (GLM), Support Vector Machine (SVM), Artificial Neural Network (ANN) model as benchmark. The result of the experiment proved that RNN's performance was better than comparative model. The accuracy of RNN was high in both sets of variables and the Area Under the Curve (AUC) value was also high. Also when we saw the hit-ratio table, the ratio of RNNs that predicted a poor company to be bankrupt was higher than that of other comparative models. However the limitation of this paper is that an overfitting problem occurs during RNN learning. But we expect to be able to solve the overfitting problem by selecting more learning data and appropriate variables. From these result, it is expected that this research will contribute to the development of a bankruptcy prediction by proposing a new dynamic model.