• Title/Summary/Keyword: genetic fuzzy

Search Result 784, Processing Time 0.039 seconds

Monthly Precipitation Forecast Using Genetic Algorithm (ANFIS 모형을 이용한 월강수량 예측)

  • Shin, Ju-Young;Jeong, Chang-Sam;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1181-1185
    • /
    • 2009
  • Adaptive Nuero-Fuzzy Inference System(ANFIS) 모형은 인공신경망과 퍼지모형의 특징을 가지는 모형으로 자료간의 관계가 선형이 아닌 비선형관계를 가질 경우 매우 정확한 예측 모형을 구축할 수 있는 특징이 있다. 월강수량 예측이 관측된 기상자료들과 비선형 관계에 있다고 생각되어 ANFIS 모형을 이용하여 월강수량을 예측하였다. 본 연구의 대상 지점으로는 금강유역의 대전 지점으로 선정하였다. 금강유역은 우리나라의 한가운데 위치하여 평균적인 강수형태 및 특징을 보여 좋은 실험유역으로 생각되어 선정하였다. 금강유역의 기상청에서 운영하는 지상 유인관측소 중 비교적 금강유역을 대표하고 양질의 자료가 기록되어 있다고 판단되는 대전지점을 실험지점으로 생각되어 선정하였다. 기상청 대전 유인 관측소에는 총 39년치 기상 자료가 기록되어 있다. 기상청에서는 전국 주요 도시들을 대상으로 2003년부터 월간 예보를 하고 있다. 본 연구에서는 기상청 월간예보와 기상청 대전 유인관측소에서 관측된 5년 치 기상자료를 모델의 입력자료로 구성하였다. 적절한 입력변수 조합을 구성하기 위하여 반복해법을 적용하였다. 5년 치 자료 중 절반은 학습을 시키는데 사용하였고 나머지 절반을 이용하여 모형을 검증하였다. 여러 입력변수를 이용하여 모형의 학습시킨 결과 입력변수가 3개 일 경우 가장 높은 정확도를 보였다. 입력변수가 3개로 학습 시킨 ANFIS 모형과 기상청에서 제공하는 월간예보를 비교해본 결과 ANFIS 모형을 적용하여 월 강수량을 예측하는 것이 기상청에서 제공하는 월간예보보다 높은 정확도를 보이는 것을 확인할 수 있었다.

  • PDF

Fuzzy System Optimization Based on RCGKA and its Application to Time Series Prediction (RCGKA기반 퍼지 시스템 최적화 및 시계열 예측 응용)

  • Bang, Young-Keun;Shim, Jae-Sun;Park, Jong-Kuk;Lee, Chul-Heui
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1644_1645
    • /
    • 2009
  • 본 논문은 비정상 시계열 예측을 위한 다중모델 퍼지 시스템과, 제안된 시스템의 최적화를 위한 유전 알고리즘의 응용을 다룬다. 일반적으로, 퍼지 예측시스템의 성능은 비선형 데이터가 가지고 있는 다양한 패턴이나 법칙성, 경향 등을 잘 분석하고 시스템에 반영함으로써 개선될 수 있다. 따라서, 본 논문은 원형 시계열의 특성을 보다 잘 반영할 수 있는 그들의 차분데이터를 시스템에 적용하며, 생성 가능한 차분 데이터들 중 원형 시계열의 특징에 가까운 일부를 추출하여 다중모델 퍼지 예측 시스템을 구현함으로써 다양한 원형시계열의 패턴이나 법칙성 등이 고려될 수 있도록 하였다. 다중 모델 퍼지 시스템의 각각의 예측기에는 구조가 간단한 k-means 클러스터링 기법을 적용하여 구현의 용이성을 꽤하였으며, 성능평가를 통해 선택된 최종 예측기는 RCGKA(real-coded genetic k-means clustering algorithms)를 통해 더욱 최적화된 규칙기반을 가지게 함으로써 예측성능이 개선될 수 있도록 하였다. 본 논문에 사용된 최적화 기법인 RCGKA에는 또한 성능이 우수한 다양한 유전연산자를 도입하여 더욱 예측기 성능이 강화될 수 있도록 하였으며, 시뮬레이션을 통해 제안된 예측시스템의 효용성을 증명하였다.

  • PDF

Face Detection for Automatic Avatar Creation by using Deformable Template and GA

  • Park, Tae-Young;Lee, Ja-Yong;Kang, Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1534-1538
    • /
    • 2005
  • In this paper, we propose a method to detect contours of a face, eyes, and a mouth of a person in the color image in order to make an avatar automatically. First, we use the HSI color model to exclude the effect of various light conditions, and find skin regions in the input image by using the skin color defined on HS-plane. And then, we use deformable templates and genetic algorithm (GA) to detect contours of a face, eyes, and a mouth. Deformable templates consist of B-spline curves and control point vectors. Those represent various shapes of a face, eyes and a mouth. GA is a very useful search algorithm based on the principals of natural selection and genetics. Second, the avatar is automatically created by using GA-detected contours and Fuzzy C-Means clustering (FCM). FCM is used to reduce the number of face colors. In result, we could create avatars which look like handmade caricatures representing user's identity. Our approach differs from those generated by existing methods.

  • PDF

Design of a New Haptic Device using a Parallel Mechanism with a Gimbal Mechanism

  • Lee, Sung-Uk;Shin, Ho-Chul;Kim, Seung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2331-2336
    • /
    • 2005
  • This paper proposes a new haptic device using a parallel mechanism with gimbal type actuators. This device has three legs actuated by 2-DOF gimbal mechanisms, which make the device simple and light by fixing all the actuators to the base. Three extra sensors are placed at passive joints to obtain a unique solution of the forward kinematics problem. The proposed haptic device is developed for an operator to use it on a desktop in due consideration of the size of an average Korean. The proposed haptic device has a small workspace for on operator to use it on a desktop and more sensitivity than a serial type haptic device. Therefore, the motors of the proposed haptic device are fixed at the base plate so that the proposed haptic device has a better dynamic bandwidth due to a low moving inertia. With this conceptual design, optimization of the design parameters is carried out. The objective function is defined by the fuzzy minimum of the global design indices, global force/moment isotropy index, global force/moment payload index, and workspace. Each global index is calculated by a SVD (singular value decomposition) of the force and moment parts of the jacobian matrix. Division of the jacobian matrix assures a consistency of the units in the matrix. Due to the nonlinearity of this objective function, Genetic algorithms are adopted for a global optimization.

  • PDF

The Control of 3-Phase Induction Motor by Hybrid Fuzzy-PID Controller : Auto-Tuning of Parameters using Genetic Algorithms (하이브리드 퍼지-PID 제어기에 의한 3상 유도 전동기의 속도제어 : 유전자 알고리즘에 의한 파라미터의 자동 동조)

  • Kwon, Yang-Won;Ahn, Tae-Chon;Kang, Hak-Su;Yoon, Yang-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.794-796
    • /
    • 1999
  • 본 논문에서는 3상 유도전동기의 속도를 제어하는데 기존 제어기의 문제점을 해결하고 최적화하기 위해서 유전자 알고리즘을 이용한 하이브리드 퍼지 -PID(HFPID) 제어기를 고안하고, 이에 대한 파라미터 설정 방법을 제안한다. 유도전동기의 제어는 지연시간이 길고, 비선형성이 강하며, 부하변동이 잦은 프로세스이기 때문에, 기존의 제어방식으로는 만족할만한 결과를 얻을 수 없다. 제안한 하이브리드 퍼지-PID 제어기는 PID 제어기의 장점인 과도기의 우수성과 퍼지 제어기의 장점인 정상기의 우수성을 퍼지 변수로 결합시켜 설계한다. 이 제어기에 유전자 알고리즘을 적용하여 최적의 퍼지 및 PID 파라미터를 설정하다. 그리고 이 제어기를 3상 유도전동기의 속도 제어에 응용한다. 또한 속도오차에 대한 룩업 표를 만들어 온라인 실시간 제어를 가능하게 한다. 이상의 과정을 3상 유도전동기에서 컴퓨터 시뮬레이션 하였다. 시뮬레이션 결과를 비교해 볼 때, 하이브리드 퍼지-PID 제어기는 기존의 제어기 보다 전동기의 속도 및 토크성분 전류 둥의 특성에서 우수한 성능을 보였다.

  • PDF

An Adaptive Virtual Machine Location Selection Mechanism in Distributed Cloud

  • Liu, Shukun;Jia, Weijia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4776-4798
    • /
    • 2015
  • The location selection of virtual machines in distributed cloud is difficult because of the physical resource distribution, allocation of multi-dimensional resources, and resource unit cost. In this study, we propose a multi-object virtual machine location selection algorithm (MOVMLSA) based on group information, doubly linked list structure and genetic algorithm. On the basis of the collaboration of multi-dimensional resources, a fitness function is designed using fuzzy logic control parameters, which can be used to optimize search space solutions. In the location selection process, an orderly information code based on group and resource information can be generated by adopting the memory mechanism of biological immune systems. This approach, along with the dominant elite strategy, enables the updating of the population. The tournament selection method is used to optimize the operator mechanisms of the single-point crossover and X-point mutation during the population selection. Such a method can be used to obtain an optimal solution for the rapid location selection of virtual machines. Experimental results show that the proposed algorithm is effective in reducing the number of used physical machines and in improving the resource utilization of physical machines. The algorithm improves the utilization degree of multi-dimensional resource synergy and reduces the comprehensive unit cost of resources.

A Chaos Control Method by DFC Using State Prediction

  • Miyazaki, Michio;Lee, Sang-Gu;Lee, Seong-Hoon;Akizuki, Kageo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • The Delayed Feedback Control method (DFC) proposed by Pyragas applies an input based on the difference between the current state of the system, which is generating chaos orbits, and the $\tau$-time delayed state, and stabilizes the chaos orbit into a target. In DFC, the information about a position in the state space is unnecessary if the period of the unstable periodic orbit to stabilize is known. There exists the fault that DFC cannot stabilize the unstable periodic orbit when a linearlized system around the periodic point has an odd number property. There is the chaos control method using the prediction of the $\tau$-time future state (PDFC) proposed by Ushio et al. as the method to compensate this fault. Then, we propose a method such as improving the fault of the DFC. Namely, we combine DFC and PDFC with parameter W, which indicates the balance of both methods, not to lose each advantage. Therefore, we stabilize the state into the $\tau$ periodic orbit, and ask for the ranges of Wand gain K using Jury' method, and determine the quasi-optimum pair of (W, K) using a genetic algorithm. Finally, we apply the proposed method to a discrete-time chaotic system, and show the efficiency through some examples of numerical experiments.

A Path & Velocity Profile Planning Based on A* Algorithm for Dynamic Environment (동적 환경을 위한 A* 알고리즘 기반의 경로 및 속도 프로파일 설계)

  • Kwon, Min-Hyeok;Kang, Yeon-Sik;Kim, Chang-Hwan;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.405-411
    • /
    • 2011
  • This paper presents a hierarchical trajectory planning method which can handle a collision-free of the planned path in complex and dynamic environments. A PV (Path & Velocity profile) planning method minimizes a sharp change of orientation and waiting time to avoid a collision with moving obstacle through detour path. The path generation problem is solved by three steps. In the first step, a smooth global path is generated using $A^*$ algorithm. The second step sets up the velocity profile for the optimization problem considering the maximum velocity and acceleration. In the third step, the velocity profile for obtaining the shortest path is optimized using the fuzzy and genetic algorithm. To show the validity and effectiveness of the proposed method, realistic simulations are performed.

Comparative Study of Artificial-Intelligence-based Methods to Track the Global Maximum Power Point of a Photovoltaic Generation System (태양광 발전 시스템의 전역 최대 발전전력 추종을 위한 인공지능 기반 기법 비교 연구)

  • Lee, Chaeeun;Jang, Yohan;Choung, Seunghoon;Bae, Sungwoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.297-304
    • /
    • 2022
  • This study compares the performance of artificial intelligence (AI)-based maximum power point tracking (MPPT) methods under partial shading conditions in a photovoltaic generation system. Although many studies on AI-based MPPT have been conducted, few studies comparing the tracking performance of various AI-based global MPPT methods seem to exist in the literature. Therefore, this study compares four representative AI-based global MPPT methods including fuzzy logic control (FLC), particle swarm optimization (PSO), grey wolf optimization (GWO), and genetic algorithm (GA). Each method is theoretically analyzed in detail and compared through simulation studies with MATLAB/Simulink under the same conditions. Based on the results of performance comparison, PSO, GWO, and GA successfully tracked the global maximum power point. In particular, the tracking speed of GA was the fastest among the investigated methods under the given conditions.

Implementation on the evolutionary machine learning approaches for streamflow forecasting: case study in the Seybous River, Algeria (유출예측을 위한 진화적 기계학습 접근법의 구현: 알제리 세이보스 하천의 사례연구)

  • Zakhrouf, Mousaab;Bouchelkia, Hamid;Stamboul, Madani;Kim, Sungwon;Singh, Vijay P.
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.395-408
    • /
    • 2020
  • This paper aims to develop and apply three different machine learning approaches (i.e., artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and wavelet-based neural networks (WNN)) combined with an evolutionary optimization algorithm and the k-fold cross validation for multi-step (days) streamflow forecasting at the catchment located in Algeria, North Africa. The ANN and ANFIS models yielded similar performances, based on four different statistical indices (i.e., root mean squared error (RMSE), Nash-Sutcliffe efficiency (NSE), correlation coefficient (R), and peak flow criteria (PFC)) for training and testing phases. The values of RMSE and PFC for the WNN model (e.g., RMSE = 8.590 ㎥/sec, PFC = 0.252 for (t+1) day, testing phase) were lower than those of ANN (e.g., RMSE = 19.120 ㎥/sec, PFC = 0.446 for (t+1) day, testing phase) and ANFIS (e.g., RMSE = 18.520 ㎥/sec, PFC = 0.444 for (t+1) day, testing phase) models, while the values of NSE and R for WNN model were higher than those of ANNs and ANFIS models. Therefore, the new approach can be a robust tool for multi-step (days) streamflow forecasting in the Seybous River, Algeria.