• Title/Summary/Keyword: genetic fuzzy

Search Result 784, Processing Time 0.02 seconds

Optimal Auto-tuning of Fuzzy control rules by means of Genetic Algorithm (유전자 알고리즘을 이용한 퍼지 제어규칙의 최적동조)

  • Kim, Joong-Young;Lee, Dae-Keun;Oh, Sung-Kwun;Jang, Sung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.588-590
    • /
    • 1999
  • In this paper the design method of a fuzzy logic controller with a genetic algorithm is proposed. Fuzzy logic controller is based on linguistic descriptions(in the form of fuzzy IF-THEN rules) from human experts. The auto-tuning method is presented to automatically improve the output performance of controller utilizing the genetic algorithm. The GA algorithm estimates automatically the optimal values of scaling factors and membership function parameters of fuzzy control rules. Controllers are applied to the processes with time-delay and the DC servo motor. Computer simulations are conducted at the step input and the output performances are evaluated in the ITAE.

  • PDF

Optimization of Fuzzy Set Fuzzy Model by Means of Hierarchical Fair Competition-based Parallel Genetic Algorithms (계층적 경쟁기반 병렬 유전자 알고리즘을 이용한 퍼지집합 퍼지모델의 최적화)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2097-2098
    • /
    • 2006
  • In this study, we introduce the hybrid optimization of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA). HFCGA is a kind of multi-populations of Parallel Genetic Algorithms(PGA), and it is used for structure optimization and parameter identification of fuzzy set model. It concerns the fuzzy model-related parameters as the number of input variables, a collection of specific subset of input variables, the number of membership functions, and the apexes of the membership function. In the hybrid optimization process, two general optimization mechanisms are explored. The structural optimization is realized via HFCGA method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods.

  • PDF

Design of Nonlinear Controller for Tracking Control based on Genetic Fuzzy algorithm (유전 퍼지 알고리즘 기반의 추종 제어를 위한 비선형 제어기 설계)

  • Kong, Jung-Shik;Ahn, Sang-Min;Lee, Bo-Hee;Kim, Jin-Geol;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2684-2686
    • /
    • 2005
  • This paper presents design of nonlinear controller based on genetic-fuzzy algorithm. Motor system that is included at a humanoid robot has many nonlinear parameters such as saturation, backlash and so on. So, it is hard to control a humanoid robot because of these nonlinearities. Also, tracking following ability is also reduced by these nonlinearities. In this paper, fuzzy PID controller is proposed for reducing efficiency by saturation. At that time, genetic algorithm is supplied at making fuzzy rule in order to make optimal fuzzy PID controller. Also, disturbance observer is used to reduce the efficiency of backlash. All these processes are verified by simulation and experiment in the real humanoid robot.

  • PDF

Image segmentation using adaptive MIN-MAX genetic clustering and fuzzy worm searching (자율 적응 최소-최대 유전 군집호와 퍼지 벌레 검색을 이용한 영상 영역화)

  • 하성욱;서석배;강대성
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.781-784
    • /
    • 1998
  • An image segmentation approach based on the fuzzy worm searching and MIN-MAx clusterng algorithm is proposed in this paper. This algorithm deals with fuzzy worm value and min-max node at a gross scene level, which investigates the edge information including fuzzy worm action. But current segmentation methods based edge extraction methods generally need the mask information for the algebraic model, and take long run times at mask operation, wheras the proposed algorithm has single operation ccording to active searching of fuzzy worms. In addition, we also genetic min-max clustering using genetic algorithm to complete clustering and fuzyz searching on grey-histogram of image for the optimum solution, which can automatically determine the size of rnages and has both strong robust and speedy calculation. The simulation results showed that the proposed algorithm adaptively divided the quantized images in histogram region and performed single searching methods, significantly alleviating the increase of the computational load and the memory requirements.

  • PDF

Fuzzy Controller Design by Means of Genetic Optimization and NFN-Based Estimation Technique

  • Oh, Sung-Kwun;Park, Seok-Beom;Kim, Hyun-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.362-373
    • /
    • 2004
  • In this study, we introduce a noble neurogenetic approach to the design of the fuzzy controller. The design procedure dwells on the use of Computational Intelligence (CI), namely genetic algorithms and neurofuzzy networks (NFN). The crux of the design methodology is based on the selection and determination of optimal values of the scaling factors of the fuzzy controllers, which are essential to the entire optimization process. First, tuning of the scaling factors of the fuzzy controller is carried out, and then the development of a nonlinear mapping for the scaling factors is realized by using GA based NFN. The developed approach is applied to an inverted pendulum nonlinear system where we show the results of comprehensive numerical studies and carry out a detailed comparative analysis.

A Study on Fuzzy Controller Using Genetic Algorithms for Robot Manipulator (로봇 매니퓰레이터의 유전알고리즘을 이용한 퍼지제어기에 관한 연구)

  • Jang, Choul-Hun;Hong, Choul-Ho;Jung, Young-Chang;Kim, Jung-Do
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2367-2369
    • /
    • 1998
  • This paper presents simulation experiment results of the fuzzy controller using genetic algorithms for robot manipulator. The fuzzy controller consists of 9 quantized levels and 25 fuzzy rules. In the simulations, the population size of each generation is set to be 100. The maximum number of generations is 200. The simulation experiment results show the effectiveness of the proposed the fuzzy controller using genetic algorithms.

  • PDF

Selecting Fuzzy Rules for Pattern Classification Systems

  • Lee, Sang-Bum;Lee, Sung-joo;Lee, Mai-Rey
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.159-165
    • /
    • 2002
  • This paper proposes a GA and Gradient Descent Method-based method for choosing an appropriate set of fuzzy rules for classification problems. The aim of the proposed method is to fond a minimum set of fuzzy rules that can correctly classify all training patterns. The number of inference rules and the shapes of the membership functions in the antecedent part of the fuzzy rules are determined by the genetic algorithms. The real numbers in the consequent parts of the fuzzy rules are obtained through the use of the descent method. A fitness function is used to maximize the number of correctly classified patterns, and to minimize the number of fuzzy rules. A solution obtained by the genetic algorithm is a set of fuzzy rules, and its fitness is determined by the two objectives, in a combinatorial optimization problem. In order to demonstrate the effectiveness of the proposed method, computer simulation results are shown.

Design of Optimized Multi-Fuzzy Controllers by Hierarchical Fair Competition-based Genetic Algorithms for Air-Conditioning System (에어컨시스템에 대한 계층적 공정 경쟁 유전자 알고리즘을 이용한 최적화된 다중 퍼지제어기 설계)

  • Jung, Seung-Hyun;Choi, Jeoung-Nae;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.344-351
    • /
    • 2007
  • In this paper, we propose an approach to design multi-fuzzy controllers for the superheat and the low pressure that have an influence on energy efficiency and stabilization of air conditioning system with multi-evaporators. Air conditioning system with multi-evaporators is composed of compressor, condenser, several evaporators and several expansion valves. It is quite difficult to control the air conditioning system because the change of the refrigerant condition give an impact on the overall air conditioning system. In order to solve the drawback, we design multi-fuzzy controllers which control simultaneously both three expansion valve and one compressor for the superheat and the low pressure of air conditioning system. The proposed multi fuzzy controllers are given as a kinds of controller types such as a simplified fuzzy inference type. Here the scaling factors of each fuzzy controller are efficiently adjusted by Hierarchical Fair Competition-based Genetic Algorithms. The values of performance index of the simulation results of the A company type compare with simulation results of simplified inference type.

Control of Glucose Concentration in a Fed-Batch Cultivation of Scutellaria baicalensis G. Plant Cells a Self-Organizing Fuzzy Logic Controller

  • Choi, Jeong-Woo;Cho, Jin-Man;Kim, Young-Kee;Park, Soo-Yong;Kim, Ik-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.739-748
    • /
    • 2001
  • A self-organizing fuzzy logic controller using a genetic algorithm is described, which controlled the glucose concentration for the enhancement of flavonoid production in a fed-batch cultivation of Scutellaria baicalensis G. plant cells. The substrate feeding strategy in a fed-batch culture was to increase the flavonoid production by using the proposed kinetic model. For the two-stage culture, the substrate feeding strategy consisted of a first period with 28 g/I of glucose to promote cell growth, followed by a second period with 5 g/I of glucose to promote flavonoid production. A simple fuzzy logic controller and the self-organizing fuzzy logic controller using a genetic algorithm was constructed to control the glucose concentration in a fed-batch culture. The designed fuzzy logic controllers were applied to maintain the glucose concentration at given set-points of the two-stage culture in fed-batch cultivation. The experimental results showed that the self-organizing fuzzy logic controller improved the controller\`s performance, compared with that of the simple fuzzy logic controller. The specific production yield and productivity of flavonoids in the two-stage culture were higher than those in the batch culture.

  • PDF

A Study on the Optimal Design Fuzzy Type Stabilizing Controller using Genetic Algorithm (유전 알고리즘을 이용한 퍼지형 안전화 제어기의 최적 설계에 관한 연구)

  • Lee, Heung-Jae;Lim, Chan-Ho;Yoon, Byong-Gyu;Lim, Hwa-Young;Song, Ja-Youn
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1382-1387
    • /
    • 1999
  • This paper presents an optimal fuzzy power system stabilizer to damp out low frequency oscillation. So far fuzzy controllers have been applied to power system stabilizing controllers due to its excellent properties on the nonlinear systems. But the design process of fuzzy logic power system stabilizer requires empirical and heuristic knowledge of human experts as well as many trial-and-errors in general. This paper presents and optimal design method of the fuzzy logic stabilizer using the genetic algorithm. Non-symmetric membership functions are optimally tuned over an evaluation function. The present inputs of fuzzy stabilizer are torque angle error and the change of torque angle error without loss of generality. The coding method used in this paper is concatenated binary mapping. Each linguistic fuzzy variable, defined as the peak of a membership function, is assigned by the mapping from a minimum value to a maximum value using eight bits. The tournament selection and the elitism are used to keep the worthy individuals in the next generation. The proposed system is applied to the one-machine infinite-bus model of a power system, and the results showed a promising possibility.

  • PDF