• Title/Summary/Keyword: genetic fuzzy

Search Result 784, Processing Time 0.028 seconds

A Study on the Use of Genetic Algorithm for Compensate a Intelligent Controller (지능제어기 보상을 위한 유전 알고리즘 이용에 관한 연구)

  • Shin, Wee-Jae;Moon, Jeong-Hoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.93-99
    • /
    • 2009
  • The fuzzy control, neural network and genetic algorithm(GA) are algorithms to make the intelligence of system more higher. In this paper, we optimized the fuzzy controller using a genetic algorithm for desire response. Also a compensated fuzzy controller has dual rules. One control rule used to decrease the overshoot and rise time occurring in transient response region and another fuzzy control rule use to decrease the steady state error and rapildy to converge at the convergence region. GA is necessary to optimal the exchange time of the two fuzzy control rule base. Fuzzy-GA controller have a process of reproduction, crossover and mutation and we experimented by hydraulic servo motor control system We could observe that compensated Fuzzy-GA controller have good control performance compare to the fuzzy control technique have two rule base table.

  • PDF

Optimal Design for Rule-Based Fuzzy Logic Controller Using GA (유전알고리즘을 이용한 규칙 기반)

  • No, Gi-Gap;Ju, Yeong-Hun;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.145-152
    • /
    • 1999
  • This paper presents an optimal design method for fuzzy logic controllers using genetic algorithms. In general, the design of fuzzy logic controllers has difficulties in the acquisition of exper's knowledge and relies to a great extent on empirical and heuristic knowledge which, in many cases, cannot be objectively justified. So, the performance of the controller can be degraded in the case of plant parameter variations or unpredictable incident which the designer may have ignored, and parameters of the fuzzy logic controller obtained by expert's control action may not be global. To solve these problems, the proposed method using genetic algorithms in this paper, can tune the parameters of fuzzy logic controller including scaling factors and determine the appropriate number of fuzzy reles systematically and automatically. We provide the second drder dead time plant and inverted pendulum system to evaluate the feasibility and generality of our proposed method. Comparison shows that the proposed controller can producd higher accuracy and a smaller number of fuzzy rules than manually tuned fuzzy logic controller.

  • PDF

Genetically Optimized Fuzzy Polynomial Neural Networks and Its Application to Multi-variable Software Process (유전론적 최적 퍼지 다항식 뉴럴네트워크와 다변수 소프트웨어 공정으로의 응용)

  • Lee, In-Tae;Oh, Sung-Kwun;Kim, Hyun-Ki;Lee, Dong-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.152-154
    • /
    • 2005
  • In this paper, we propose a new architecture of Fuzzy Polynomial Neural Networks(FPNN) by means of genetically optimized Fuzzy Polynomial Neuron(FPN) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially Genetic Algorithms(GAs). The design of the network exploits the extended Group Method of Data Handling(GMDH) with some essential parameters of the network being provided by the designer and kept fixed throughout the overall development process. This restriction may hamper a possibility of producing an optimal architecture of the model. The proposed FPNN gives rise to a structurally optimized network and comes with a substantial level of flexibility in comparison to the one we encounter in conventional FPNNs. It is shown that the proposed genetic algorithms-based Fuzzy Polynomial Neural Networks is more useful and effective than the existing models for nonlinear process. We experimented with Medical Imaging System(MIS) dataset to evaluate the performance of the proposed model.

  • PDF

Design of a Controller for a Flexible Manipulator Using Fuzzy Theory and Genetic Algorithm (피지이론과 유전알고리츰의 합성에 의한 Flexible Manipulator 제어기 설계)

  • Lee, Kee-Seong;Cho, Hyun-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.61-66
    • /
    • 2002
  • A position control algorithm for a flexible manipulator is studied. The proposed algorithm is based on a fuzzy theory with a Steady State Genetic Algorithm(SSGA) and an Adaptive Genetic Algorithms(AGA). The proposed controller for a flexible manipulator have decreased 90.8%, 31.8%, 31.3% in error when compared with a conventional fuzzy controller, fuzzy controller using neural network, fuzzy controller using evolution strategies, respectively when the weight and the velocity of end-point are 0.8k9 and 1m/s, respectively.

The Balancing of Disassembly Line of Automobile Engine Using Genetic Algorithm (GA) in Fuzzy Environment

  • Seidi, Masoud;Saghari, Saeed
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.4
    • /
    • pp.364-373
    • /
    • 2016
  • Disassembly is one of the important activities in treating with the product at the End of Life time (EOL). Disassembly is defined as a systematic technique in dividing the products into its constituent elements, segments, sub-assemblies, and other groups. We concern with a Fuzzy Disassembly Line Balancing Problem (FDLBP) with multiple objectives in this article that it needs to allocation of disassembly tasks to the ordered group of disassembly Work Stations. Tasks-processing times are fuzzy numbers with triangular membership functions. Four objectives are acquired that include: (1) Minimization of number of disassembly work stations; (2) Minimization of sum of idle time periods from all work stations by ensuring from similar idle time at any work-station; (3) Maximization of preference in removal the hazardous parts at the shortest possible time; and (4) Maximization of preference in removal the high-demand parts before low-demand parts. This suggested model was initially solved by GAMS software and then using Genetic Algorithm (GA) in MATLAB software. This model has been utilized to balance automotive engine disassembly line in fuzzy environment. The fuzzy results derived from two software programs have been compared by ranking technique using mean and fuzzy dispersion with each other. The result of this comparison shows that genetic algorithm and solving it by MATLAB may be assumed as an efficient solution and effective algorithm to solve FDLBP in terms of quality of solution and determination of optimal sequence.

Autonomous Guided Vehicle Control Using GA-Fuzzy System (GA-Fuzzy 시스템을 이용한 무인 운송차의 제어)

  • 나영남;손영수;오창윤;이강현;배상현
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.4
    • /
    • pp.45-55
    • /
    • 1997
  • According to the increase of factory-automation in the field of production, the importance of autonomous guided vehicle's(AGV) role is also increased. The study about an active and effective controller which can flexibly prepare for the changeable circumstance is in progressed. For this study, the research about action base system to evolve by itself is also being actively considered. In this paper, we composed an active and effective AGV fuzzy controller to be able to do self-organization. For composing it, we tuned suboptimally membership function using genetic algorithm(GA) and improved the control efficiency by the self-correction and generating the control rules. Self-organizing controlled(S0C) fuzzy controller proposed in the paper is capable of self-organizing by using the characteristics of fuzzy controller and genetic algorithm. It intuitionally controls AGV and easily adapts to the circumstance.

  • PDF

Optimal Walking Trajectory for a Quadruped Robot Using Genetic-Fuzzy Algorithm

  • Kong, Jung-Shik;Lee, Bo-Hee;Kim, Jin-Geol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2492-2497
    • /
    • 2003
  • This paper presents optimal walking trajectory generation for a quadruped robot with genetic-fuzzy algorithm. In order to move a quadruped robot smoothly, both generations of optimal leg trajectory and free walking are required. Generally, making free walking is difficult to realize for a quadruped robot, because the patterned trajectory may interfere in the free walking. In this paper, we suggest the generation method for the leg trajectory satisfied with free walking pattern so as to avoid obstacle and walk smoothly. We generate via points of leg with respect to body motion, and then we use the genetic-fuzzy algorithm to search for the optimal via velocity and acceleration information of legs. All these methods are verified with PC simulation program, and implemented to SERO-V robot.

  • PDF

Fuzzy Model Identification for Time Series System Using Wavelet Transform and Genetic DNA-Code

  • Lee, Yeun-Woo;Kim, Jung-Chan;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.322-325
    • /
    • 2003
  • In this paper, we propose n new fuzzy model identification of time series system using wavelet transform and genetic DNA code. Generally, it is well known that the DNA coding method is more diverse in the knowledge expression and better in the optimization performance than the genetic algorithm (GA) because it can encode more plentiful genetic information based on the biological DNA. The proposed method can construct a fuzzy model using the wavelet transform, in which the coefficients are identified by the DNA coding method. Thus, we can effectively get the fuzzy model of the nonlinear system by using the advantages of both wavelet transform and DNA coding method. In order to demonstrate the superiority of the proposed method, it is compared with modeling method using the conventional GA.

  • PDF

Determination of dosing rate for water treatment using fusion of genetic algorithms and fuzzy inference system (유전알고리즘과 퍼지추론시스템의 합성을 이용한 정수처리공정의 약품주입률 결정)

  • 김용열;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.952-955
    • /
    • 1996
  • It is difficult to determine the feeding rate of coagulant in water treatment process, due to nonlinearity, multivariables and slow response characteristics etc. To deal with this difficulty, the fusion of genetic algorithms and fuzzy inference system was used in determining of feeding rate of coagulant. The genetic algorithms are excellently robust in complex operation problems, since it uses randomized operators and searches for the best chromosome without auxiliary information from a population consists of codings of parameter set. To apply this algorithms, we made the look up table and membership function from the actual operation data of water treatment process. We determined optimum dosages of coagulant (PAC, LAS etc.) by the fuzzy operation, and compared it with the feeding rate of the actual operation data.

  • PDF

Using a Genetic-Fuzzy Algorithm as a Computer Aided Breast Cancer Diagnostic Tool

  • Alharbi, Abir;Tchier, F;Rashidi, MM
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3651-3658
    • /
    • 2016
  • Computer-aided diagnosis of breast cancer is an important medical approach. In this research paper, we focus on combining two major methodologies, namely fuzzy base systems and the evolutionary genetic algorithms and on applying them to the Saudi Arabian breast cancer diagnosis database, to aid physicians in obtaining an early-computerized diagnosis and hence prevent the development of cancer through identification and removal or treatment of premalignant abnormalities; early detection can also improve survival and decrease mortality by detecting cancer at an early stage when treatment is more effective. Our hybrid algorithm, the genetic-fuzzy algorithm, has produced optimized systems that attain high classification performance, with simple and readily interpreted rules and with a good degree of confidence.