• Title/Summary/Keyword: genetic fuzzy

Search Result 784, Processing Time 0.03 seconds

Estimation of Optimal Control Parameters and Design of Hybrid Fuzzy Controller by Means of Genetic Algorithms (유전자 알고리즘에 의한 HFC의 최적 제어파라미터 추정 및 설계)

  • Lee, Dae-Keun;Oh, Sung-Kwun;Jang, Sung-Whan;Kim, Yong-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.11
    • /
    • pp.599-609
    • /
    • 2000
  • The new design methodology of a hybrid fuzzy controller by means of the genetic algorithms is presented. First, a hybrid fuzzy controller(HFC) related to the optimal estimation of control parameters is proposed. The control input for the system in the HFC combined PID controller with fuzzy controller is a convex combination of the FLC's output and PID's output by a fuzzy variable, namely, membership function of weighting coefficient. Second, an auto-tuning algorithms utilizing the simplified reasoning method and genetic algorithms is presented to automatically improve the performance of hybrid fuzzy controller. Especially, in order to auto-tune scaling factors and PID parameters of HFC using GA, three kinds of estimation modes such as basic, contraction, and expansion mode are effectively utilized. The proposed HFC is evaluated and discussed to show applicability and superiority with the and of three representative processes.

  • PDF

Bearing Fault Diagnosis Using Fuzzy Inference Optimized by Neural Network and Genetic Algorithm

  • Lee, Hong-Hee;Nguyen, Ngoc-Tu;Kwon, Jeong-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.353-357
    • /
    • 2007
  • The bearing diagnostics method is presented in this paper using fuzzy inference based on vibration data. Both time-domain and frequency-domain features are used as input data for bearing fault detection. The Adaptive Network based Fuzzy Inference System (ANFIS) and Genetic Algorithm (GA) have been proposed to select the fuzzy model input and output parameters. Training results give the optimized fuzzy inference system for bearing diagnosis based on measured vibration data. The result is also tested with other sets of bearing data to illustrate the reliability of the chosen model.

Optimization of fuzzy logic controller using genetic algorithm (유전 알고리듬을 이용한 지능형 퍼지 제어기에 관한 연구)

  • Jang, Wook;Son, Yoo-Seok;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.960-963
    • /
    • 1996
  • In this paper, the optimization of a fuzzy controller using genetic algorithm is studied. The fuzzy controller has been widely applied to industries because it is highly flexible, robust easy to implement and suitable for complex systems. Generally, the design of fuzzy controller has difficulties in determining the structure of the rules and the membership functions. To solve these problems, the proposed method optimizes the structure of fuzzy rules and the parameters of membership functions simultaneously in an off-line method. The proposed method is evaluated through computer simulations.

  • PDF

Genetically Optimized Information Granules-based FIS (유전자적 최적 정보 입자 기반 퍼지 추론 시스템)

  • Park, Keon-Jun;Oh, Sung-Kwun;Lee, Young-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.146-148
    • /
    • 2005
  • In this paper, we propose a genetically optimized identification of information granulation(IG)-based fuzzy model. To optimally design the IG-based fuzzy model we exploit a hybrid identification through genetic alrogithms(GAs) and Hard C-Means (HCM) clustering. An initial structure of fuzzy model is identified by determining the number of input, the seleced input variables, the number of membership function, and the conclusion inference type by means of GAs. Granulation of information data with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial paramters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the inital parameters are tuned effectively with the aid of the genetic algorithms and the least square method. And also, we exploite consecutive identification of fuzzy model in case of identification of structure and parameters. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

A modified strategy for DNA coding based genetic algorithm and its experiment

  • Kyungwon Jang;Taechon Ahn;Lee, Dongyoon;Kim, Seonik;Jinhyun Kang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.70.1-70
    • /
    • 2002
  • In the fuzzy applications and theories, it is very important to consider how to design the optimal fuzzy model from short training data, in order to construct the reasonable fuzzy model for identifying the practical process. There are several concerns to be confirmed for efficient fuzzy model design. One of concern is the optimization problem of the fuzzy model. In various applications, the genetic algorithm is widely applied to obtain optimal fuzzy model and other cases that adopt evolutionary mechanism of the nature. If we use natural selection and multiplication operation of the genetic algorithm, early convergence to local minimum can be occurred. In other word, we can find only optimum...

  • PDF

Online Fuzzy Modelling of Nonlinear Systems Using a Genetic Algorithm (유전알고리즘을 이용한 비선형 시스템의 온라인 퍼지 모델링)

  • 이현식;오정환;신위재;김종화;진강규
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.80-87
    • /
    • 1998
  • This paper presents and online scheme for fuzzy modelling of nonlinear systems, based on the model adjustment technique and the genetic algorithm technique. The fuzzy model is characterized by fuzzy "if-then" rules which represent locally linear input-output relations whose consequence parts are defined as subsystems of a nonlinear sysem. The discrete-time model for each subsystem is obtained to deal with initalization and unmeasurable signal problems in online estimation and the final output of the fuzzy model is computed from the outputs of the discrete-time models. Then, the parameters of both the premise and consequence parts of the fuzzy model are adjusted by a genetic algorithm. A set of simulation works is carried out to demonstrate the effectiveness of the proposed method.ed method.

  • PDF

Wavelet-Based Fuzzy Modeling Using a DNA Coding Method

  • Joo, Young-Hoon;Lee, Veun-Woo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.121-126
    • /
    • 2003
  • In this paper, we propose a new wavelet-based fuzzy modeling using a DNA coding method. Generally, it is well known that the DNA coding method is more diverse in the knowledge expression and better in the optimization performance than the genetic algorithm (GA) because it can encode more plentiful genetic informations based on the biological DNA. The proposed method can construct a fuzzy model using the wavelet transform, in which the coefficients are identified by the DNA coding method. Thus, we can effectively get the fuzzy model of the nonlinear system by using the advantages of both wavelet transform and DNA coding method. In order to demonstrate the superiority of the proposed method, it is compared with modeling method using the conventional GA.

The Design of Hybrid Fuzzy Controller Based on Parameter Estimation Mode Using Genetic Algorithms (유전자 알고리즘을 이용한 파라미터 추정모드기반 하이브리드 퍼지 제어기의 설계)

  • 이대근;오성권;장성환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.228-231
    • /
    • 2000
  • A hybrid fuzzy controller by means of the genetic algorithms is presented. The control input for the system in the HFC is a convex combination of the FLC's output in transient state and PlD's output in steady state by a fuzzy variable. The HFC combined a PID controller with a fuzzy controller concurrently produces the better output performance than any other controller. A auto-tuning algorithms is presented to automatically improve the performance of hybrid fuzzy controller using genetic algorithms. The algorithms estimates automatical Iy the optimal values of scaling factors, PID parameters and membership function parameters of fuzzy control rules. Especially, in order to auto-tune scaling factors and PID parameters of HFC using GA three kinds of estimation modes are effectively utilized. The HFCs are applied to the second process with time-delay. Computer simulations are conducted at step input and the performances of systems are evaluated and also discussed in ITAE(Integral of the Time multiplied by the Absolute value of Error ) and other ways.

  • PDF

Hybrid Fuzzy Controller Based on Control Parameter Estimation Mode Using Genetic Algorithms (유전자 알고리즘을 이용한 제어파라미터 추정모드기반 HFC)

  • Lee, Dae-Keun;Oh, Sung-Kwun;Jang, Sung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2545-2547
    • /
    • 2000
  • In this paper, a hybrid fuzzy controller using genetic algorithm based on parameter estimation mode to obtain optimal control parameter is presented. First, The control input for the system in the HFC is a convex combination of the FLC's output in transient state and PID's output in steady state by a fuzzy variable, namely, membership function of weighting coefficient. Second, genetic algorithms is presented to automatically improve the performance of hybrid fuzzy controller utilizing the conventional methods for finding PID parameters and estimation mode of scaling factor. The algorithms estimates automatically the optimal values of scaling factors, PID parameters and membership function parameters of fuzzy control rules according to the rate of change and limitation condition of control input. Computer simulations are conducted to evaluate the performance of proposed hybrid fuzzy controller. ITAE, overshoot and rising time are used as a performance index of controller.

  • PDF

Co-evolutionary Genetic Algorithm for Designing and Optimaizing Fuzzy Controller

  • Byung, Jun-Hyo;Bo, Sim-Kwee
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.354-360
    • /
    • 1998
  • In general, it is very difficult to find optimal fuzzy rules by experience when a system is dynamical and/or complex. Futhermore proper fuzzy partitioning is not deterministic and there is no unique solution. Therefore we propose a new design method of an optimal fuzzy logic controller, that is a co-evolutionary genetic algorithm finding optimal fuzzy rule and proper membership functions at the same time. We formalize the relation between fuzzy rules and membership functions in terms of fitness. We review the typical approaching methods to co-evolutionary genetic algorithms , and then classify them by fitness relation matrix. Applications of the proposed method to a path planning problem of autonomous mobile robots when moving objects exist are presented to demonstrate the performance and effectiveness of the method.

  • PDF