• Title/Summary/Keyword: genetic determinant

Search Result 45, Processing Time 0.025 seconds

Structural system identification by measurement error-minimization observability method using multiple static loading cases

  • Lei, Jun;Lozano-Galant, Jose Antonio;Xu, Dong;Zhang, Feng-Liang;Turmo, Jose
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.339-351
    • /
    • 2022
  • Evaluating the current condition of existing structures is of primary importance for economic and safety reasons. This can be addressed by Structural System Identification (SSI). A reliable static SSI depends on well-designed sensor configuration and loading cases, as well as efficient parameter estimation algorithms. Static SSI by the Measurement Error-Minimizing Observability Method (MEMOM) is a model-based deterministic static SSI method that could estimate structural parameters from static responses. In the current state of the art, this method is only applicable when structures are subjected to one loading case. This might lead to lack of information in some local regions of the structure (such as the null curvatures zones). To address this issue, the SSI by MEMOM using multiple loading cases is proposed in this work. Observability equations obtained from different loading cases are concatenated simultaneously and an optimization procedure is introduced to obtain the estimations by minimizing the discrepancy between the predicted response and the measured one. In addition, a Genetic-Algorithm (GA)-based Optimal Sensor Placement (OSP) method is proposed to tackle the OSP problem under multiple static loading cases for the very first time. In this approach, the Fisher Information Matrix (FIM)'s determinant is used as the metric of the goodness of sensor configurations. The numerical examples of a 3-span continuous bridge and a 13-story frame, are analyzed to validate the applicability of the extended SSI by MEMOM and the GA-based OSP method.

Genotoxic Effects on Gas Station Attendants in South-southeastern México due to Prolonged and Chronic Exposure to Gasoline

  • Rebeca I. Martinez-Salinas;Irene Sanchez-Moreno;Juan J. Morales Lopez;Benito Salvatierra Izaba;Everardo Barba Macias;Anahi Armas-Tizapantzi;Arturo Torres-Dosal
    • Safety and Health at Work
    • /
    • v.15 no.2
    • /
    • pp.236-241
    • /
    • 2024
  • Background: Gasoline, a complex mixture of volatile organic compounds is classified as possibly carcinogenic to humans. Gasoline station attendants, consistently exposed to its hazardous components, may face genotoxic effects. This study aimed to assess the influence of varying work shift durations on DNA damage in gasoline station attendants. Methods: Ninety individuals from three locations in southern México were studied. Peripheral blood mononuclear cells (PBMCs) were isolated, and DNA damage was assessed using the comet assay. Demographic, occupational, and lifestyle data were collected. Statistical analyses included t-tests, ANOVA, and Pearson correlation. Results: Significant differences in DNA damage parameters were observed between exposed and unexposed groups. The impact of tobacco, alcohol, and exercise on DNA damage was negligible. Extended work shifts (12 and 24 hours) showed heightened DNA damage compared to 8-hour shifts and the unexposed group. A novel finding revealed a modest but significant correlation between DNA damage and job seniority. Conclusion: The study highlights the intricate relationship between occupational exposure to gasoline components, DNA damage, and work shift lengths. Extended shifts correlate with heightened genotoxic effects, emphasizing the importance of personalized safety measures. The significant correlation between DNA damage and job seniority introduces occupational longevity as a determinant in the genetic health of gasoline station attendants. This discovery has implications for implementing targeted interventions and preventive strategies to safeguard workers' genetic integrity throughout their years of service. The study calls for further exploration of unconsidered factors in understanding the multifactorial nature of DNA damage in this occupational setting.

Optimal sensor placement for mode shapes using improved simulated annealing

  • Tong, K.H.;Bakhary, Norhisham;Kueh, A.B.H.;Yassin, A.Y. Mohd
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.389-406
    • /
    • 2014
  • Optimal sensor placement techniques play a significant role in enhancing the quality of modal data during the vibration based health monitoring of civil structures, where many degrees of freedom are available despite a limited number of sensors. The literature has shown a shift in the trends for solving such problems, from expansion or elimination approach to the employment of heuristic algorithms. Although these heuristic algorithms are capable of providing a global optimal solution, their greatest drawback is the requirement of high computational effort. Because a highly efficient optimisation method is crucial for better accuracy and wider use, this paper presents an improved simulated annealing (SA) algorithm to solve the sensor placement problem. The algorithm is developed based on the sensor locations' coordinate system to allow for the searching in additional dimensions and to increase SA's random search performance while minimising the computation efforts. The proposed method is tested on a numerical slab model that consists of two hundred sensor location candidates using three types of objective functions; the determinant of the Fisher information matrix (FIM), modal assurance criterion (MAC), and mean square error (MSE) of mode shapes. Detailed study on the effects of the sensor numbers and cooling factors on the performance of the algorithm are also investigated. The results indicate that the proposed method outperforms conventional SA and Genetic Algorithm (GA) in the search for optimal sensor placement.

Characterization of the active site and coenzyme binding pocket of the monomeric UDP- galactose 4'- epimerase of Aeromonas hydrophila

  • Agarwal, Shivani;Mishra, Neeraj;Agarwal, Shivangi;Dixit, Aparna
    • BMB Reports
    • /
    • v.43 no.6
    • /
    • pp.419-426
    • /
    • 2010
  • Aeromonas hydrophila is a bacterial pathogen that infects a large number of eukaryotes, including humans. The UDP-galactose 4'-epimerase (GalE) catalyzes interconversion of UDP-galactose to UDP-glucose and plays a key role in lipopolysaccharide biosynthesis. This makes it an important virulence determinant, and therefore a potential drug target. Our earlier studies revealed that unlike other GalEs, GalE of A. hydrophila exists as a monomer. This uniqueness necessitated elucidation of its structure and active site. Chemical modification of the 6xHis-rGalE demonstrated the role of histidine residue in catalysis and that it did not constitute the substrate binding pocket. Loss of the 6xHis-rGalE activity and coenzyme fluorescence with thiol modifying reagents established the role of two distinct vicinal thiols in catalysis. Chemical modification studies revealed arginine to be essential for catalysis. Site-directed mutagenesis indicated Tyr149 and Lys153 to be involved in catalysis. Use of glycerol as a cosolvent enhanced the GalE thermostability significantly.

Characteristics of Bacteriocin and Mucin Production Phenotypes in Lactobacillus plantarum 27

  • Kim, Wang-Jung;Ha, Duk-Mo;Ray, Bibek
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.96-101
    • /
    • 1991
  • Phenotypic changes after plasmid curing experiment suggested that the bacteriocin production phenotype ($Bac^{+}$) might be linked to a chromosomal DNA and the mucin production phenotype ($Muc^{+}$) might be linked to a 62.5 kilobase (kb) plasmid (pMUC62) in Lactobacillus plantarum 27 isolated from meat starter culture. The non-mucoid ($Muc^{-}$) variants were missing pMUC62 but they produced bacteriocin as the wild strain ($Bac^{+}$). There was no difference in antibiotic resistance and sugar fermentation patterns between the wild strain ($Bac^{+}$ $Muc^{+}$) and the nonmucoid ($Bac^{+}$ $Muc^{-}$) variants. Antimicrobial spectrum of bacteriocin produced by both wild strain and $Muc^{-}$ variant of Lb. plantarum 27 included strains of Pediococcus acidilactici (A, M, H), Pediococcus sp. isolated from meat, Lactobacillus sp. isolated from meat, Lb. plantarum NCDO 955 and Staphylococcus aureus 485. Neither of the tested Gram negative bacteria were inhibited by bacteriocin. Antimicrobial activity of crude bacteriocin was retained after autoclaving, DNase or catalase treatment and exposure from pHs 4 to 9 but was lost after treating with several proteolytic enzymes and exposure at pH 10.

  • PDF

A Novel Kinesin-like Protein, Surhe is Associated with Dorsalization in the Zebrafish Embryos

  • Kim, Eun-Joong;Ro, Hyun-Ju;Huh, Tae-Lin;Lee, Chang-Joong;Choi, Jin-Hee;Rhee, Myung-Chull
    • Animal cells and systems
    • /
    • v.12 no.4
    • /
    • pp.219-230
    • /
    • 2008
  • We are reporting the expression patterns and possible biological functions of a novel Kinesin-like protein, Surhe, in the zebrafish. Homology studies of derived amino acid sequences suggest that Surhe has an amino-terminal kinesin motor domain that is similar to that of the emerging MKLP-1 subfamily [Kim and Endow, 2000] and two coiledcoil domains in a central region. Cellular localization studies in mammalian cells revealed that Surhe protein is located in cytoplasm, suggesting that Surhe may be involved in the intracellular transport. During the developmental process, surhe transcripts are highly expressed in early embryonic stages. Overexpression of the dominant negative form of Surhe significantly down-regulates the dorsalization markers, such as goosecoid, bozozok, and chordin. Taken together, we postulate that Surhe may be involved in dorsalization process as a motor molecule.

Factors affecting beef quality and nutrigenomics of intramuscular adipose tissue deposition

  • Myunggi Baik;Jaesung Lee;Sang Yeob Kim;Kamburawala Kankanamge Tharindu Namal Ranaweera
    • Animal Bioscience
    • /
    • v.36 no.2_spc
    • /
    • pp.350-363
    • /
    • 2023
  • Beef quality is characterized by marbling (marbling degree and marbling fineness), physiochemical (shear force, meat color, fat color, texture, and maturity), and sensory (tenderness, flavor, juiciness, taste, odor, and appearance) traits. This paper summarizes and addresses beef-quality characteristics and the beef-grading systems in Korea, Japan, the USA, and Australia. This paper summarizes recent research progresses on the genetic and nutritional factors that affect beef quality. Intramuscular (i.m.) adipose tissue deposition or marbling is a major determinant of beef quality. This paper addresses the mechanisms of i.m. adipose tissue deposition focused on adipogenesis and lipogenesis. We also address selected signaling pathways associated with i.m. adipose tissue deposition. Nutrients contribute to the cellular response and phenotypes through gene expression and metabolism. This paper addresses control of gene expression through several nutrients (carbohydrates, fat/fatty acids, vitamins, etc.) for i.m. adipose tissue deposition. Several transcription factors responsible for gene expression via nutrients are addressed. We introduce the concept of genome-based precision feeding in Korean cattle.

Genetic sequence and phylogenetic analysis of spike genes of porcine epidemic diarrhea virus (PEDV) in Jeonbuk province (전북지역 돼지유행성설사 바이러스 Spike 유전자 염기서열 및 계통분석)

  • Park, Mi-Yeon;Moon, Bo-Mi;Gang, Su-Jin;Lee, Jong-Ha;Park, Jin-Woo;Cho, Sung-Woo;Her, Cheol-Ho
    • Korean Journal of Veterinary Service
    • /
    • v.44 no.2
    • /
    • pp.73-83
    • /
    • 2021
  • Although many swine farms continuously vaccinated to sow to prevent Porcine epidemic diarrhea(PED), PED has occurred annually in swine herds in Jeonbuk province, Korea. In the present study, the small intestine and feces samples from 17 farms where severe watery diarrhea and death of newborn piglets occurred in 2019 were collected, amplified by RT-PCR and determined the complete nucleotide sequences of the spike (S) glycoprotein genes of nine Jeonbuk PEDV isolates. The spike (S) glycoprotein is an important determinant for molecular characterization and genetic relationship of PEDV. These nine complete S gene isolates were compared with other PEDV reference strains to identify the molecular diversity, phylogenetic relationships and antigenicity analysis. 9 field strains share 98.5~100% homologies with each other at the nucleotide sequence level and 97.3~100% homologies with each other at the amino acid level. The nine Jeonbuk PEDV isolates were classified into G2b group including a genetic specific signal, S-indels (insertion and deletion of S gene). In addition, comparisons the neutralizing epitopes of S gene between 9 field strains and domestic vaccine strains of Korea mutated 12-15 amino acids with SM-98-1 (G1a group) and mutated 0-3 amino acids with QIAP1401 (G2b group). Therefore, the development of G2b-based live vaccines will have to be expedited to ensure effective prevention of endemic PED in Korea. In addition, we will need to be prepared with periodic updates of preventive vaccines based on the PEDV variants for the re-emergence of a virulent strain.

Cloning and Characterization of a Heterologous Gene Stimulating Antibiotic Production in Streptomyces lividans TK-24

  • Kwon, Hyung-Jin;Lee, Seung-Soo;Hong, Soon-Kwang;Park, Uhn-Mee;Suh, Joo-Won
    • Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.102-110
    • /
    • 1999
  • Genetic determinant for the secondary metabolism was studied in heterologous expression in Streptomyces lividans TK-24 using Streptomyces griseus ATCC 10137 as a donor strain. Chromosomal DNA of S. griseus was ligated into the high-copy number Streptomyces shuttle plasmid, pWHM3, and introduced into S. lividans TK-24. A plasmid clone with 4.3-kb BamHI DNA of S. griseus (pMJJ201) was isolated by detecting for stimulatory effect on actinorhodin production by visual inspection. The 4.3-kb BamHI DNA was cloned into pWHM3 under the control of the strong constitutive ermEp promoter in both directions (pMJJ202); ermEp promoter-mediated transcription for coding sequence reading right to left: pMJJ203; ermEp promoter-mediated transcription for coding sequence reading left to right) and reintroduced into S. lividans TK-24. The production of actinorhodin was markedly stimulated due to introduction of pMJJ202 on regeneration agar. The introduction of pMJJ202 also stimulated production of actinorhodin and undecylproidigiosin in submerged culture employing the actinorhodin production medium. Introduction of pMJJ203 resulted in a marked decrease of production of the two pigments. Nucleotide sequence analysis of the 4.3-kb region revealed three coding sequences: two coding sequences reading left to right, ORF1 and ORF2, one coding sequence reading right to left, ORF3. Therefore, it was suggested that the ORF3 product was responsible for the stimulation of antibiotic production. The C-terminal region of ORF3 product showed a local alignment with Myb-related transcriptional factors, which implicated that the ORF3 product might be a novel DNA-binding protein related to the regulation of secondary metabolism in Streptomyces.

  • PDF

Analysis of Natural Recombination in Porcine Endogenous Retrovirus Envelope Genes

  • Lee, Dong-Hee;Lee, Jung-Eun;Park, Nu-Ri;Oh, Yu-Kyung;Kwon, Moo-Sik;Kim, Young-Bong
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.585-590
    • /
    • 2008
  • Human tropic Porcine Endogenous Retroviruses (PERVs) are the major concern in zoonosis for xenotransplantation because PERVs cannot be eliminated by specific pathogen-free breeding. Recently, a PERV A/C recombinant with PERV-C bearing PERV-A gp70 showed a higher infectivity (approximately 500-fold) to human cells than PERV-A. Additionally, the chance of recombination between PERVs and HERVs is frequently stated as another risk of xenografting. Overcoming zoonotic barriers in xenotransplantation is more complicated by recombination. To achieve successful xenotransplantation, studies on the recombination in PERVs are important. Here, we cloned and sequenced proviral PERV env sequences from pig gDNAs to analyze natural recombination. The envelope is the most important element in retroviruses as a pivotal determinant of host tropisms. As a result, a total of 164 PERV envelope genes were cloned from pigs (four conventional pigs and two miniature pigs). Distribution analysis and recombination analysis of PERVs were performed. Among them, five A/B recombinant clones were identified. Based on our analysis, we determined the minimum natural recombination frequency among PERVs to be 3%. Although a functional recombinant envelope clone was not found, our data evidently show that the recombination event among PERVs may occur naturally in pigs with a rather high possibility.