Aim: It is well known that polycyclic aromatic hydrocarbons (PAHs) such as benzo (a) pyrene have carcinogenic properties and may cause many types of cancers in human populations. Genetic susceptibility might be due to variation in genes encoding for carcinogen metabolizing enzymes, such as cytochrome P-450 (CYP450). Our study aimed to investigate the effect of genetic polymorphisms of CYP1A1 (m1 and m2) on genetic damage in 115 coal-tar workers exposed to PAHs at their work place. Methods: Genetic polymorphisms of CYP1A1 were determined by the PCR-RFLP method. Comet and buccal micronucleus assays were used to evaluate genetic damage among 115 coal tar workers and 105 control subjects. Results: Both CYP1A1 m1 and CYP1A1 m2 heterozygous and homozygous (wt/mt+mt/mt) variants individually as well as synergistically showed significant association (P<0.05) with genetic damage as measured by tail moment (TM) and buccal micronuclei (BMN) frequencies in control and exposed subjects. Conclusion: In our study we found significant association of CYP1A1 m1 and m2 heterozygous (wt/mt)+homozygous (mt/mt) variants with genetic damage suggesting that these polymorphisms may modulate the effects of PAH exposure in occupational settings.
This study identifies the damage detection of truss structures by using genetic algorithm(GA) from changed elements properties. To model the damaged truss structures, the modulus of elasticity of some specific elements is reduced. The analysis of truss structures is performed with static analysis by applying uniform load, and the location and extent of structural damage is detected by comparing the stain of each element of healthy truss structures with damaged truss structures using genetic algorithm. In this study, some numerical examples are presented to detect the location and extent of damage using genetic algorithm.
Ghodrati Amiri, G.;Seyed Razzaghi, S.A.;Bagheri, A.
Smart Structures and Systems
/
v.7
no.2
/
pp.117-132
/
2011
This paper is aimed at presenting two methods on the basis of pattern search and genetic algorithms to detect and estimate damage in plates using the modal data of a damaged plate. The proposed methods determine the damages of plate structures using optimization of an objective function by pattern search and genetic algorithms. These methods have been applied to two numerical examples, namely four-fixed supported and cantilever plates with and without noise in the modal data and containing one or several damages. The obtained results clearly reveal that the proposed methods can be viewed as a powerful and reliable method for structural damage detection in plates using the modal data.
Although some mutations are beneficial and are the driving force behind evolution, it is important to maintain DNA integrity and stability because it contains genetic information. However, in the oxygen-rich environment we live in, the DNA molecule is under constant threat from endogenous or exogenous insults. DNA damage could trigger the DNA damage response (DDR), which involves DNA repair, the regulation of cell cycle checkpoints, and the induction of programmed cell death or senescence. Dysregulation of these physiological responses to DNA damage causes developmental defects, neurological defects, premature aging, infertility, immune system defects, and tumors in humans. Some human syndromes are characterized by unique neurological phenotypes including microcephaly, mental retardation, ataxia, neurodegeneration, and neuropathy, suggesting a direct link between genomic instability resulting from defective DDR and neuropathology. In this review, rare human genetic disorders related to abnormal DDR and damage repair with neural defects will be discussed.
This study utilizes the fine-tuning and small-digit characteristics of the successive zooming genetic algorithm (SZGA) to propose a method of structural damage detection in a continuum structure, where the differences in the natural frequencies of a structure obtained by experiment and FEM are compared and minimized using an assumed location and extent of structural damage. The final methodology applied to the structural damage detection is a kind of pseudo-discrete-variable-algorithm that counts the soundness variables as one (perfectly sound) if they are above a certain standard, such as 0.99. This methodology is based on the fact that most well-designed structures exhibit failures at some critical point due to manufacturing error, while the remaining region is free of damage. Thus, damage of 1% (depending on the given standard) or less can be neglected, and the search concentrated on finding more serious failures. It is shown that the proposed method can find out the exact structural damage of the monitored structure and reduce the time and amount of computation.
In this paper, a new damage detection and quantification method has been presented to perform detection and quantification of structural damage under ambient vibration loadings. To extract modal properties of the structural system under ambient excitation, natural excitation technique (NExT) and eigensystem realization algorithm (ERA) are employed. Sensitivity matrices of the dynamic residual force vector have been derived and used in the parameter subset selection method to identify multiple damaged locations. In the sequel, the steady state genetic algorithm (SSGA) is used to determine quantified levels of the identified damage by minimizing errors in the modal flexibility matrix. In this study, performance of the proposed damage detection and quantification methodology is evaluated using a finite element model of a truss structure with considerations of possible experimental errors and noises. A series of numerical examples with five different damage scenarios including a challengingly small damage level demonstrates that the proposed methodology can efficaciously detect and quantify damage under noisy ambient vibrations.
Nobahari, Mehdi;Ghasemi, Mohammad Reza;Shabakhty, Naser
Steel and Composite Structures
/
v.25
no.4
/
pp.485-496
/
2017
In this paper, damage detection has been introduced as an optimization problem and a two-step method has been proposed that can detect the location and severity of damage in truss structures precisely and reduce the volume of computations considerably. In the first step, using the residual force vector concept, the suspected damaged members are detected which will result in a reduction in the number of variables and hence a decrease in the search space dimensions. In the second step, the precise location and severity of damage in the members are identified using the genetic algorithm and the results of the first step. Considering the reduced search space, the algorithm can find the optimal points (i.e. the solution for the damage detection problem) with less computation cost. In this step, the Efficient Correlation Based Index (ECBI), that considers the structure's first few frequencies in both damaged and healthy states, is used as the objective function and some examples have been provided to check the efficiency of the proposed method; results have shown that the method is innovatively capable of detecting damage in truss structures.
This study develops a two stage procedure to identify the structural damage based on the optimized artificial neural networks. Initially, the modal strain energy index (MSEI) is established to extract the damaged elements and to reduce the computational time. Then the genetic algorithm (GA) and artificial neural networks (ANNs) are combined to detect the damage severity. The input of the network is modal strain energy index and the output is the flexural stiffness of the beam elements. The principal component analysis (PCA) is utilized to reduce the input variants of the neural network. By using the genetic algorithm to optimize the parameters, the ANNs can significantly improve the accuracy and convergence of the damage identification. The influence of noise on damage identification results is also studied. The simulation and experiment on beam structures shows that the adaptive parameter selection neural network can identify the damage location and severity of beam structures with high accuracy.
The structural health of a pipeline is usually assessed by visual inspection. In addition to the fact that this method is expensive and time consuming, inspection of the whole structure is not possible due to limited access to some points. Therefore, adopting a damage detection method without the mentioned limitations is important in order to increase the safety of the structure. In recent years, vibration-based methods have been used to detect damage. These methods detect structural defects based on the fact that the dynamic responses of the structure will change due to damage existence. Therefore, the location and extent of damage, before and after the damage, are determined. In this study, fuzzy genetic algorithm has been used to monitor the structural health of the pipeline to create a fuzzy automated system and all kinds of possible failure scenarios that can occur for the structure. For this purpose, the results of an experimental model have been used. Its numerical model is generated in ABAQUS software and the results of the analysis are used in the fuzzy genetic algorithm. Results show that the system is more accurate in detecting high-intensity damages, and the use of higher frequency modes helps to increase accuracy. Moreover, the system considers the damage in symmetric regions with the same degree of membership. To deal with the uncertainties, some error values are added, which are observed to be negligible up to 10% of the error.
Journal of the Computational Structural Engineering Institute of Korea
/
v.21
no.1
/
pp.1-11
/
2008
Stiffness estimation of a shear building due to local damages is usually achieved though structural analysis based on the assumed material properties and idealized numerical modeling of structure. Conventional numerical modeling, however, frequently causes an inevitable error in the structural response and this makes it difficult to exactly predict the damage state in structure. To solve this problem, this paper introduces a damage detection technique for shear building using genetic algorithm. The introduced algorithm evaluates the damage in structure using a flexibility matrix since the flexibility matrix can exactly be obtained from the field test in spite of using a few lower dynamic modes of structure. The introduced algorithm is expected to be more effectively used in damage detection of structures rather than conventional method using the stiffness matrix. Moreover, even in cases when an accurate measurement of structural stiffness cannot be expected, the proposed technique makes it possible to estimate the absolute change in stiffness of the structure on the basis of genetic algorithm. The validity of the proposed technique is demonstrated though numerical analysis using OPENSEES.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.