• Title/Summary/Keyword: genetic algorithm operators

Search Result 172, Processing Time 0.025 seconds

Comparison of Adaptive Operators in Genetic Algorithms (유전알고리즘에서 적응적 연산자들의 비교연구)

  • Yun, Young-Su;Seo, Seoun-Lock
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.189-203
    • /
    • 2002
  • In this paper we compare the performances of adaptive operators in genetic algorithm. For the adaptive operators, the crossover and mutation operators of genetic algorithm are considered. One fuzzy logic controller is developed in this paper and two heuristics is presented from conventional works for constructing the operators. The fuzzy logic controller and two conventional heuristics adaptively regulate the rates of the operators during genetic search process. All the algorithms are tested and analyzed in numerical examples. Finally, the best algorithm is recommended.

  • PDF

Multimodal Optimization Based on Global and Local Mutation Operators

  • Jo, Yong-Gun;Lee, Hong-Gi;Sim, Kwee-Bo;Kang, Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1283-1286
    • /
    • 2005
  • Multimodal optimization is one of the most interesting topics in evolutionary computational discipline. Simple genetic algorithm, a basic and good-performance genetic algorithm, shows bad performance on multimodal problems, taking long generation time to obtain the optimum, converging on the local extrema in early generation. In this paper, we propose a new genetic algorithm with two new genetic mutational operators, i.e. global and local mutation operators, and no genetic crossover. The proposed algorithm is similar to Simple GA and the two genetic operators are as simple as the conventional mutation. They just mutate the genes from left or right end of a chromosome till the randomly selected gene is replaced. In fact, two operators are identical with each other except for the direction where they are applied. Their roles of shaking the population (global searching) and fine tuning (local searching) make the diversity of the individuals being maintained through the entire generation. The proposed algorithm is, therefore, robust and powerful.

  • PDF

A Matrix-Based Genetic Algorithm for Structure Learning of Bayesian Networks

  • Ko, Song;Kim, Dae-Won;Kang, Bo-Yeong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.135-142
    • /
    • 2011
  • Unlike using the sequence-based representation for a chromosome in previous genetic algorithms for Bayesian structure learning, we proposed a matrix representation-based genetic algorithm. Since a good chromosome representation helps us to develop efficient genetic operators that maintain a functional link between parents and their offspring, we represent a chromosome as a matrix that is a general and intuitive data structure for a directed acyclic graph(DAG), Bayesian network structure. This matrix-based genetic algorithm enables us to develop genetic operators more efficient for structuring Bayesian network: a probability matrix and a transpose-based mutation operator to inherit a structure with the correct edge direction and enhance the diversity of the offspring. To show the outstanding performance of the proposed method, we analyzed the performance between two well-known genetic algorithms and the proposed method using two Bayesian network scoring measures.

Maintenance Scheduling using a Genetic Algorithm with New Crossover Operators (유전알고리즘을 이용한 발전계통의 보수계획 수립)

  • Jung, Jung-Won;Kim, Jung-Ik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.545-552
    • /
    • 1999
  • The Maintenance scheduling is one of the mid-term scheduling problems systems. There have been many methods for this problem, but there is no effective way to treat all the generators simultaneously. In this paper, we apply a genetic algorithm(GA) to the maintenance scheduling problem. We proposed new crossover operators(BOX type crossover) to improve searching ability of GA. Satisfactory results are obtained by GA with the proposed corssover operators.

  • PDF

A Genetic Algorithm-based Scheduling Method for Job Shop Scheduling Problem (유전알고리즘에 기반한 Job Shop 일정계획 기법)

  • 박병주;최형림;김현수
    • Korean Management Science Review
    • /
    • v.20 no.1
    • /
    • pp.51-64
    • /
    • 2003
  • The JSSP (Job Shop Scheduling Problem) Is one of the most general and difficult of all traditional scheduling problems. The goal of this research is to develop an efficient scheduling method based on genetic algorithm to address JSSP. we design scheduling method based on SGA (Single Genetic Algorithm) and PGA (Parallel Genetic Algorithm). In the scheduling method, the representation, which encodes the job number, is made to be always feasible, initial population is generated through integrating representation and G&T algorithm, the new genetic operators and selection method are designed to better transmit the temporal relationships in the chromosome, and island model PGA are proposed. The scheduling method based on genetic algorithm are tested on five standard benchmark JSSPs. The results were compared with other proposed approaches. Compared to traditional genetic algorithm, the proposed approach yields significant improvement at a solution. The superior results indicate the successful Incorporation of generating method of initial population into the genetic operators.

A Genetic Algorithm for the Traveling Salesman Problem Using Prufer Number (Prufer 수를 이용한 외판원문제의 유전해법)

  • 이재승;신해웅;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.41
    • /
    • pp.1-14
    • /
    • 1997
  • This study proposes a genetic algorithm using Pr(equation omitted)fer number for the traveling salesman problem(PNGATSP). Nearest neighbor nodes are mixed with randomly selected nodes at the stage of generating initial solutions. Proposed PNGATSP adopts a few ideas which are different from traditional genetic algorithms. For instance, an exponential fitness function and elitism are used and Pr(equation omitted)fer number is used for encoding TSP. Genetic operators are selected by experiments, which make a good solution among four combinations of conventional genetic operators and new genetic operators. For respective combinations, robust set of parameters is determined by the experimental designing approach. The feature of Pr(equation omitted)fer number code for TSP and the search power of GA using Pr(equation omitted)fer number is analysed. The best is a combination of OX(order crossover) and swap, which is superior to the other experimented combinations of genetic operators by 1.0%∼12.8% deviation.

  • PDF

Optimum redundancy design for maximum system reliability: A genetic algorithm approach (최대 시스템 신뢰도를 위한 최적 중복 설계: 유전알고리즘에 의한 접근)

  • Kim Jae Yun;Shin Kyoung Seok
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.4
    • /
    • pp.125-139
    • /
    • 2004
  • Generally, parallel redundancy is used to improve reliability in many systems. However, redundancy increases system cost, weight, volume, power, etc. Due to limited availability of these resources, the system designer has to maximize reliability subject to various constraints or minimize resources while satisfying the minimum requirement of system reliability. This paper presents GAs (Genetic Algorithms) to solve redundancy allocation in series-parallel systems. To apply the GAs to this problem, we propose a genetic representation, the method for initial population construction, evaluation and genetic operators. Especially, to improve the performance of GAs, we develop heuristic operators (heuristic crossover, heuristic mutation) using the reliability-resource information of the chromosome. Experiments are carried out to evaluate the performance of the proposed algorithm. The performance comparison between the proposed algorithm and a pervious method shows that our approach is more efficient.

Automatic Discrete Optimum Design of Space Trusses using Genetic Algorithms (유전자알고리즘에 의한 공간 트러스의 자동 이산화 최적설계)

  • Park, Choon-Wook;Youh, Baeg-Yuh;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.1 s.1
    • /
    • pp.125-134
    • /
    • 2001
  • The objective of this study is the development of size discrete optimum design algorithm which is based on the GAs(genetic algorithms). The algorithm can perform size discrete optimum designs of space trusses. The developed algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of space trusses and the constraints are limite state design codes(1998) and displacements. The basic search method for the optimum design is the GAs. The algorithm is known to be very efficient for the discrete optimization. This study solves the problem by introducing the GAs. The GAs consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. In the genetic process of the simple GAs, there are three basic operators: reproduction, cross-over, and mutation operators. The efficiency and validity of the developed discrete optimum design algorithm was verified by applying GAs to optimum design examples.

  • PDF

Incorporating Genetic Operators into Optimizing Highway Alignments (도로선형최적화를 위한 유전자 연산자의 적용)

  • Kim, Eung-Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.2 s.73
    • /
    • pp.43-54
    • /
    • 2004
  • This study analyzes characteristics and applicability of genetic algorithms and genetic operators to optimize highway alignments. Genetic algorithms, one of artificial intelligence techniques, are fast and efficient search algorithms for generating, evaluation and finding optimal highway alignment alternatives. The performance of genetic algorithms as an optimal search tool highly depends on genetic operators that are designed as a problem-specific. This study adopts low mutation operators(uniform mutation operator, straight mutation operator, non-uniform mutation operator whole non-uniform mutation operator) to explore whole search spaces, and four crossover operators(simple crossover operator, two-point crossover operator, arithmetic crossover operator, heuristic crossover operator) to exploit food characteristics of the best chromosome in previous generations. A case study and a sensitivity analysis have shown that the eight problem-specific operators developed for optimizing highway alignments enhance the search performance of genetic algorithms, and find good solutions(highway alignment alternatives). It has been also found that a mixed and well-combined use of mutation and crossover operators is very important to balance between pre-matured solutions when employing more crossover operators and more computation time when adopting more mutation operators.

On Sweeping Operators for Reducing Premature Convergence of Genetic Algorithms (유전 알고리즘의 조기수렴 저감을 위한 연산자 소인방법 연구)

  • Lee, Hong-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1210-1218
    • /
    • 2011
  • GA (Genetic Algorithms) are efficient for searching for global optima but may have some problems such as premature convergence, convergence to local extremum and divergence. These phenomena are related to the evolutionary operators. As population diversity converges to low value, the search ability of a GA decreases and premature convergence or converging to local extremum may occur but population diversity converges to high value, then genetic algorithm may diverge. To guarantee that genetic algorithms converge to the global optima, the genetic operators should be chosen properly. In this paper, we analyze the effects of the selection operator, crossover operator, and mutation operator on convergence properties, and propose the sweeping method of mutation probability and elitist propagation rate to maintain the diversity of the GA's population for getting out of the premature convergence. Results of simulation studies verify the feasibility of using these sweeping operators to avoid premature convergence and convergence to local extrema.