• Title/Summary/Keyword: genetic admixture

Search Result 32, Processing Time 0.065 seconds

Application of genomic big data to analyze the genetic diversity and population structure of Korean domestic chickens

  • Eunjin Cho;Minjun Kim;Jae-Hwan Kim;Hee-Jong Roh;Seung Chang Kim;Dae-Hyeok Jin;Dae Cheol Kim;Jun Heon Lee
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.912-921
    • /
    • 2023
  • Genetic diversity analysis is crucial for maintaining and managing genetic resources. Several studies have examined the genetic diversity of Korean domestic chicken (KDC) populations using microsatellite markers, but it is difficult to capture the characteristics of the whole genome in this manner. Hence, this study analyzed the genetic diversity of several KDC populations using high-density single nucleotide polymorphism (SNP) genotype data. We examined 935 birds from 21 KDC populations, including indigenous and adapted Korean native chicken (KNC), Hyunin and Jeju KDC, and Hanhyup commercial KDC populations. A total of 212,420 SNPs of 21 KDC populations were used for calculating genetic distances and fixation index, and for ADMIXTURE analysis. As a result of the analysis, the indigenous KNC groups were genetically closer and more fixed than the other groups. Furthermore, Hyunin and Jeju KDC were similar to the indigenous KNC. In comparison, adapted KNC and Hanhyup KDC populations derived from the same original species were genetically close to each other, but had different genetic structures from the others. In conclusion, this study suggests that continuous evaluation and management are required to prevent a loss of genetic diversity in each group. Basic genetic information is provided that can be used to improve breeds quickly by utilizing the various characteristics of native chickens.

Population Structure of Mungbean Accessions Collected from South and West Asia using SSR markers

  • Kabir, Khandakar Md. Rayhanul;Park, Yong Jin
    • Korean Journal of Breeding Science
    • /
    • v.43 no.1
    • /
    • pp.14-22
    • /
    • 2011
  • In this study, 15 simple sequence repeat (SSR) markers were used to analyze the population structure of 55 mungbean accessions (34 from South Asia, 20 from West Asia, 1 sample from East Asia). A total of 56 alleles were detected, with an average of 3.73 per locus. The mean of major allele frequency, expected heterozygosity and polymorphic information content for 15 SSR loci were 0.72, 0.07 and 0.33 respectively. The mean of major allele frequency was 0.79 for South Asia, and 0.74 for West Asia. The mean of genetic diversity and polymorphic information content were almost similar for South Asian and West Asian accessions (genetic diversity 0.35 and polymorphic information content 0.29). Model-based structure analysis revealed the presence of three clusters based on genetic distance. Accessions were clearly assigned to a single cluster in which >70% of their inferred ancestry was derived from one of the model-based populations. 47 accessions (85.56%) showed membership with the clusters and 8 accessions (14.54%) were categorized as admixture. The results could be used to understanding the genetic structure of mungbean cultivars from these regions and to support effective breeding programs to broaden the genetic basis of mungbean varieties.

Genetic characteristics of Korean Jeju Black cattle with high density single nucleotide polymorphisms

  • Alam, M. Zahangir;Lee, Yun-Mi;Son, Hyo-Jung;Hanna, Lauren H.;Riley, David G.;Mannen, Hideyuki;Sasazaki, Shinji;Park, Se Pill;Kim, Jong-Joo
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.789-800
    • /
    • 2021
  • Objective: Conservation and genetic improvement of cattle breeds require information about genetic diversity and population structure of the cattle. In this study, we investigated the genetic diversity and population structure of the three cattle breeds in the Korean peninsula. Methods: Jeju Black, Hanwoo, Holstein cattle in Korea, together with six foreign breeds were examined. Genetic diversity within the cattle breeds was analyzed with minor allele frequency (MAF), observed and expected heterozygosity (HO and HE), inbreeding coefficient (FIS) and past effective population size. Molecular variance and population structure between the nine breeds were analyzed using a model-based clustering method. Genetic distances between breeds were evaluated with Nei's genetic distance and Weir and Cockerham's FST. Results: Our results revealed that Jeju Black cattle had lowest level of heterozygosity (HE = 0.21) among the studied taurine breeds, and an average MAF of 0.16. The level of inbreeding was -0.076 for Jeju Black, while -0.018 to -0.118 for the other breeds. Principle component analysis and neighbor-joining tree showed a clear separation of Jeju Black cattle from other local (Hanwoo and Japanese cattle) and taurine/indicine cattle breeds in evolutionary process, and a distinct pattern of admixture of Jeju Black cattle having no clustering with other studied populations. The FST value between Jeju Black cattle and Hanwoo was 0.106, which was lowest across the pair of breeds ranging from 0.161 to 0.274, indicating some degree of genetic closeness of Jeju Black cattle with Hanwoo. The past effective population size of Jeju Black cattle was very small, i.e. 38 in 13 generation ago, whereas 209 for Hanwoo. Conclusion: This study indicates genetic uniqueness of Jeju Black cattle. However, a small effective population size of Jeju Black cattle indicates the requirement for an implementation of a sustainable breeding policy to increase the population for genetic improvement and future conservation.

An evolutionary system for the prediction of high performance concrete strength based on semantic genetic programming

  • Castelli, Mauro;Trujillo, Leonardo;Goncalves, Ivo;Popovic, Ales
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.651-658
    • /
    • 2017
  • High-performance concrete, besides aggregate, cement, and water, incorporates supplementary cementitious materials, such as fly ash and blast furnace slag, and chemical admixture, such as superplasticizer. Hence, it is a highly complex material and modeling its behavior represents a difficult task. This paper presents an evolutionary system for the prediction of high performance concrete strength. The proposed framework blends a recently developed version of genetic programming with a local search method. The resulting system enables us to build a model that produces an accurate estimation of the considered parameter. Experimental results show the suitability of the proposed system for the prediction of concrete strength. The proposed method produces a lower error with respect to the state-of-the art technique. The paper provides two contributions: from the point of view of the high performance concrete strength prediction, a system able to outperform existing state-of-the-art techniques is defined; from the machine learning perspective, this case study shows that including a local searcher in the geometric semantic genetic programming system can speed up the convergence of the search process.

Genetic diversity and population structure of rice accessions from South Asia using SSR markers

  • Cui, Hao;Moe, Kyaw Thu;Chung, Jong-Wook;Cho, Young-Il;Lee, Gi-An;Park, Yong-Jin
    • Korean Journal of Breeding Science
    • /
    • v.42 no.1
    • /
    • pp.11-22
    • /
    • 2010
  • The population structure of a domesticated species is influenced by the natural history of the populations of its pre-domesticated ancestors, as well as by the breeding system and complexity of breeding practices implemented by humans. In the genetic and population structure analysis of 122 South Asia collections using 29 simple sequence repeat (SSR) markers, 362 alleles were detected, with an average of 12.5 per locus. The average expected heterozygosity and polymorphism information content (PIC) for each SSR locus were 0.74 and 0.72,respectively. The model-based structure analysis revealed the presence of three clusters with the 91.8% (shared > 75%) membership, with 8.2% showing admixture. The genetic distances of Clusters 1-3 were 0.55, 0.56, and 0.68, respectively. Polymorphic information content followed the same trend (Cluster 3 had the highest value and Cluster 1 had smallest value), with genetic distances for each cluster of 0.52, 0.52, and 0.65, respectively. This result could be used for supporting rice breeding programs in South Asia countries.

Concrete mix design for service life of RC structures exposed to chloride attack

  • Kwon, Seung-Jun;Kim, Sang-Chel
    • Computers and Concrete
    • /
    • v.10 no.6
    • /
    • pp.587-607
    • /
    • 2012
  • The purpose of this research is to propose a design technique of concrete mix proportions satisfying service life through genetic algorithm (GA) and neural network (NN). For this, thirty mix proportions and the related diffusion coefficients in high performance concrete are analyzed and fitness function for diffusion coefficient is obtained considering mix components like w/b (water to binder ratio), cement content, mineral admixture (slag, flay ash and silica fume) content, sand and coarse aggregate content. Through averaging the results of 10 times GA simulations, relative errors to the previous data decrease lower than 5.0% and the simulated mix proportions are verified with the experimental results. Assuming the durability design parameters, intended diffusion coefficient for intended service life is derived and mix proportions satisfying the service life are obtained. Among the mix proportions, the most optimized case which satisfies required concrete strength and the lowest cost is selected through GA algorithm. The proposed technique would be improved with the enhancement of comprehensive data set including wider the range of diffusion coefficients.

Appearance/Instance of Genetically Modified Maize at Grain Receiving Harbors and Along Transportation Routes in Korea

  • Han, Sung Min;Kim, Do Young;Uddin, Md. Romij;Hwang, Ki Seon;Lee, Bumkyu;Kim, Chang-Gi;Park, Kee Woong
    • Weed & Turfgrass Science
    • /
    • v.3 no.3
    • /
    • pp.221-224
    • /
    • 2014
  • Genetically modified (GM) crops are not permitted to be cultivated in Korea, but can only be imported as food or feed purposes. The import of GM crops has sharply increased in recent years, thus raising concerns with regard to the unintentional escape of these crops during transport and manufacturing as well as the subsequent contamination of local, non-GM plants. Hence, monitoring of GM crops was studied in or outside of grain receiving ports as well as from feed-processing plants in Korea during July 2008. We observed spilled maize grains and established plants primarily in storage facilities that are exposed around the harbors and near transportation routes of the feed-processing areas. Based on the PCR analyses, a total of 17 GM maize plants and 11 seeds were found among the samples. In most cases, the established maize plants found in this study were at the vegetative stage and thus failed to reach the reproductive stage. This study concludes that, in order to prevent a genetic admixture in the local environment for GM crops or seeds, frequent monitoring work and proper action should be taken.

Genetic Relationships among Different Breeds of Chinese Gamecocks Revealed by mtDNA Variation

  • Qu, L.J.;Li, X.Y.;Yang, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.8
    • /
    • pp.1085-1090
    • /
    • 2009
  • There are currently five primary breeds of Chinese gamecock, the Henan, Luxi, Tulufan, Xishuangbanna andZhangzhou. Though there is historical evidence of cockfighting in China dating as far back as 2,800 years, the origin and genetic relationships of these breeds are not well understood. We used sequence variation from the mtDNA cytb gene and control region (1,697 bp) to examine the domestication history and genetic relationship of the Chinese gamecock. From 75 samples (14-16 per breed) we found 34 haplotypes, and 45 variable nucleotides. Phylogenetic reconstruction indicated multiple origins of the gamecock breeds. The breeds in the north and center of China, Tulufan, Luxi and Henan, clustered together in a haplogroup and may have the same ancestor. However the southern breeds, Zhangzhou and Xishuangbanna clustered into two isolated haplogroups, suggesting another two origins of Chinese gamecock. Meanwhile, extensive admixture was also found because samples from different breeds, more or less, were always grouped together in the same clades. Based on these results, we discuss the possibilities of multiple origins of gamecock breeds, from both ancestral gamecocks as well as other domestic chickens and red jungle fowl.

Genetic Differentiation of Chinese Indigenous Meat Goats Ascertained Using Microsatellite Information

  • Ling, Y.H.;Zhang, X.D.;Yao, N.;Ding, J.P.;Chen, H.Q.;Zhang, Z.J.;Zhang, Y.H.;Ren, C.H.;Ma, Y.H.;Zhang, X.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.2
    • /
    • pp.177-182
    • /
    • 2012
  • To investigate the genetic diversity of seven Chinese indigenous meat goat breeds (Tibet goat, Guizhou white goat, Shannan white goat, Yichang white goat, Matou goat, Changjiangsanjiaozhou white goat and Anhui white goat), explain their genetic relationship and assess their integrity and degree of admixture, 302 individuals from these breeds and 42 Boer goats introduced from Africa as reference samples were genotyped for 11 microsatellite markers. Results indicated that the genetic diversity of Chinese indigenous meat goats was rich. The mean heterozygosity and the mean allelic richness (AR) for the 8 goat breeds varied from 0.697 to 0.738 and 6.21 to 7.35, respectively. Structure analysis showed that Tibet goat breed was genetically distinct and was the first to separate and the other Chinese goats were then divided into two sub-clusters: Shannan white goat and Yichang white goat in one cluster; and Guizhou white goat, Matou goat, Changjiangsanjiaozhou white goat and Anhui white goat in the other cluster. This grouping pattern was further supported by clustering analysis and Principal component analysis. These results may provide a scientific basis for the characteristization, conservation and utilization of Chinese meat goats.

Genetic Diversity and Population Structure Analyses of SSIV-2 Gene in Rice

  • Thant Zin Maung;Yong-Jin Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.212-212
    • /
    • 2022
  • Soluble starch synthase (SS) IV-2 is one of the starch synthase gene family members and responsible for starch chain elongation interacting with other rice eating and cooking quality controlling genes (e.g., AGPlar and PUL). SSIV-2 is mainly expressed in leaves, especially at grain-filling stage and its alleles can significantly affect rice quality. Here, we investigated the genetic diversity and population structure analyses of SSIV-2 gene by using 374 rice accessions. This rice set was grouped into 320 cultivated bred (subsequently classified into temperate japonica, indica, tropical japonica, aus, aromatic and admixture) and 54 wild rice. Haplotyping of cultivated rice accessions provided a total of 7 haplotypes, and only three haplotypes are functional indicating four substituted SNPs in two exons of chromosome 5: T/A and G/T in exon 4, and C/G and G/A in exon 13. Including the wild, a highest diverse group (0.0041), nucleotide diversity analysis showed temperate japonica (0.0001) had a lowest diversity value indicating the origin information of this gene evolution. Higher and positive Tajima5s D value of indica (1.9755) indicate a selective signature under balancing selection while temperate japonica (-0.9018) was in lowest Tajima's D value due to a recent selective sweep by positive selection. We found the most diverse genetic components of the wild in PCA but shared in some portion with other cultivated groups. Fixation index (FST-values) and phylogenetic analysis indicate a closer relationship of the wild with indica (FST=0.256) than to its association to both of temperate japonica (FST=0.589). Structure analysis shows a clear separation of cultivated subpopulations at every K value, but genetic components were admixed within the wild illustrating the same genetic background with japonica and indica in some proportion.

  • PDF