• 제목/요약/키워드: generic speaker models

검색결과 2건 처리시간 0.016초

양자화 된 범용 화자모델을 이용한 연속적 화자분류 (Sequential Speaker Classification Using Quantized Generic Speaker Models)

  • 권순일
    • 전자공학회논문지CI
    • /
    • 제44권1호
    • /
    • pp.26-32
    • /
    • 2007
  • 연속적 화자 분류에 있어서 분류 대상이 되는 화자에 대한 정보가 없거나 부족할 경우 정확한 연속적 분류가 어렵다. 이러한 문제를 해결하기 위해 표본 화자모델을 이용하는 방법이 제안되었는데, 이 방법을 이용하면 미리 준비된 화자의 데이터가 없이 화자모델 초기화와 화자분류가 가능해진다. 하지만 여전히 화자모델의 표본을 얻는 방법에 어려움이 따른다. 이 문제를 해결하기 위해 벡터 양자화에서 비롯된 화자 양자화를 제안한다. 유선전화 데이터를 이용한 실험에서 화자 양자화를 이용한 표본 화자모델 방법은 무작위 표본추출 방법을 이용할 경우 보다 25%의 성능 향상을 보였다.

Speaker Tracking Using Eigendecomposition and an Index Tree of Reference Models

  • Moattar, Mohammad Hossein;Homayounpour, Mohammad Mehdi
    • ETRI Journal
    • /
    • 제33권5호
    • /
    • pp.741-751
    • /
    • 2011
  • This paper focuses on online speaker tracking for telephone conversations and broadcast news. Since the online applicability imposes some limitations on the tracking strategy, such as data insufficiency, a reliable approach should be applied to compensate for this shortage. In this framework, a set of reference speaker models are used as side information to facilitate online tracking. To improve the indexing accuracy, adaptation approaches in eigenvoice decomposition space are proposed in this paper. We believe that the eigenvoice adaptation techniques would help to embed the speaker space in the models and hence enrich the generality of the selected speaker models. Also, an index structure of the reference models is proposed to speed up the search in the model space. The proposed framework is evaluated on 2002 Rich Transcription Broadcast News and Conversational Telephone Speech corpus as well as a synthetic dataset. The indexing errors of the proposed framework on telephone conversations, broadcast news, and synthetic dataset are 8.77%, 9.36%, and 12.4%, respectively. Using the index tree structure approach, the run time of the proposed framework is improved by 22%.