• Title/Summary/Keyword: generation efficiency

검색결과 3,089건 처리시간 0.234초

고전력 전자소자에서 열전생성기의 생성효율과 열적성능 (Generation Efficiency and Thermal Performance of a Thermoelectric Generator with a High Power Electronic Component)

  • 김경준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권1호
    • /
    • pp.51-56
    • /
    • 2012
  • 본 논문은 고파워 전자소자의 폐열로부터 에너지 수확을 목적으로 하는 열전생성기의 생성효율과 열적 성능에 대하여 논한다. 열경계저항을 포함하는 열전모델이 적용되어 생성효율과 고전력 전자소자의 junction 온도를 예측하였고 그 결과는 실험치로 검증되어진다. 검증결과는 예측치와 계측치의 오차가 작음을 보인다. 검증후 열전모델은 다양한 로드저항과 열원의 열율에서 생성효율, 열전생성기 양면의 온도차, 소자의 junction 온도를 예측한다. 본 연구는 로드저항이 생성효율, 열전생성기 양면의 온도차, junction 온도에 미치는 영향에 대해서도 탐구한다.

우리나라에서 비농업 부문의 물 효율성, 경제성장, 전력생산 및 CO2배출 간의 관계 분석 (Analysis of the relationship among water-efficiency in the non-agricultural sector, economic growth, electricity generation, and CO2 emission - evidence from Korea -)

  • 정용훈;이성훈
    • 한국수자원학회논문집
    • /
    • 제51권12호
    • /
    • pp.1229-1235
    • /
    • 2018
  • 본 연구는 우리나라의 1990-2014년 시계열 자료를 활용하여 물 효율성, 경제성장, 전력생산 및 이산화탄소 배출 간의 장 단기 인과관계를 실증적으로 분석하였다. 기존 연구들이 경제성장, 이산화탄소 배출 및 전력 및 에너지에 국한되어 분석을 한 반면 본 연구는 기존 변수들과 더불어 물 효율성과의 관계를 설명하였다는 기여를 가지고 있다. 실증분석결과를 살펴보면, 네 변수들은 단기조정관계를 통해 장기적으로 균형상태에 도달한다는 것과 변수들 간의 인과관계에서 이산화탄소 배출과 경제성장은 물 효율성의 원인이 되고 이산화탄소 배출과 경제성장 및 물 효율성은 전력생산의 원인이 된다는 사실을 발견하였다. 또한 물 효율성에 대한 장기 영향계수 추정결과를 통해 전력생산의 증가와 경제성장 및 이산화탄소 배출의 감소는 물 효율성을 증가시키며, 일정 수준 이상의 경제성장은 물 효율성의 증가속도를 감소시킨다는 경제성장과 물 효율성의 역U자형 관계를 확인하였다.

Efficiency Factors of Singlet Oxygen Generation from Core-Modified Expanded Porphyric : Tetrathiarubyrin in Ethanol

  • 하정현;정국영;김민선;이양훈;신구;김용록
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권1호
    • /
    • pp.63-67
    • /
    • 2001
  • The photophysical properties and the singlet oxygen generation efficiency of tetrathiarubyrin have been investigated to elucidate the possibility of its use as a photodynamic therapy (PDT) photosensitizer by steady-state and time-resolved spectroscopic methods. The observed photophysical properties were affected by various molecular aspects, such as extended ${\pi}conjugation$, structural distortion, and internal heavy atom. The steady-state electronic absorption spectrum was red-shifted due to the extended $\pi-conjugation$, and the spin orbital coupling was enhanced by the structural distortion and the internal heavy atom effect. As a result of the enhanced spin orbital coupling, the triplet quantum yield increased to 0.90 $\pm$ 0.10 and the triplet state lifetime was shortened to 7.0 $\pm$ 1.2 ${\mu}s$. Since the triplet state decays at a relatively faster rate, the efficiency of the oxygen quenching of the triplet state decreases. The singlet oxygen quantum yield was estimated to be 0.52 $\pm$ 0.02, which is somewhat lower than expected. On the other hand, the efficiency of singlet oxygen generation during the oxygen quenching of triplet state, $f{\Delta}^T$, is near unity. Such high efficiency of singlet oxygen generation can be explained by the following two possible factors: The hydrogen bonding of ethanol which impedes the deactivation pathway of the charge transfer complex with oxygen to the ground state, the less probability of the aggregation formation.

차세대 태양전지의 계면 개질 전략 (Interfacial Engineering Strategies for Third-Generation Photovoltaics)

  • 임훈희;최민재;정연식
    • Current Photovoltaic Research
    • /
    • 제4권3호
    • /
    • pp.98-107
    • /
    • 2016
  • Third-generation photovoltaics are of low cost based on solution processes and are targeting a high efficiency. To meet the commercial demand, however, significant improvements of both efficiency and stability are required. In this sense, interfacial engineering can be useful key to solve these issues because trap sites and interfacial energy barrier and/or chemical instability at organic/organic and organic/inorganic interfaces are critical factors of efficiency and stability degradation. Here, we thoroughly review the interfacial engineering strategies applicable to three representative third-generation photovoltaics - organic, perovskite, colloidal quantum dot solar cell devices.

새로운 MPPT 알고리듬의 시뮬레이션 및 실험을 통한 실증 연구 (A Novel Two-Mode MPPT Control Algorithm Based on Comparative Study of Existing Algorithms)

  • 최주엽;유권종;정영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.207-212
    • /
    • 2002
  • As is well-known, the maximum power point(MPP) of PV power generation system depends on array temperature and solar insolation, it is necessary to track MPP of solar array all the time. Among various MPP control algorithms, the constant voltage control method, the perturbation and observation(P&O) method and the incremental conductance method(IncCond) have drawn many attractions due to the usefulness of each system. In this paper, the effectiveness of above mentioned three different control algorithms are thoroughly investigated via simulations and proposed efficiency evaluation method on experiment. Both the steady-state and transient characteristics of each control algorithms along with measured efficiency are analyzed, respectively. Finally, a novel MPPT control algorithm combining the constant voltage control and IncCond method for low insolation condition is proposed to improve efficiency of the 3KW PV power generation system.

  • PDF

Electric power generation from treatment of food waste leachate using microbial fuel cell

  • Wang, Ze Jie;Lim, Bong Su
    • Environmental Engineering Research
    • /
    • 제22권2호
    • /
    • pp.157-161
    • /
    • 2017
  • Simultaneous treatment of food waste leachate and power generation was investigated in an air-cathode microbial fuel cell. A TCOD removal efficiency of $95.4{\pm}0.3%$ was achieved for an initial COD concentration of 2,860 mg/L. Maximum power density ranged was maximized at $1.86W/m^3$, when COD concentration varied between 60 mg/L and 2,860 mg/L. Meanwhile, columbic efficiency was determined between 1.76% and 11.07% for different COD concentrations. Cyclic voltammetric data revealed that the oxidation peak voltage occurred at -0.20 V, shifted to about -0.25 V. Moreover, a reduction peak voltage at -0.45 V appeared when organic matters were exhausted, indicating that reducible matters were produced during the decomposition of organic matters. The results showed that it was feasible to use food waste leachate as a fuel for power generation in a microbial fuel cell, and the treatment efficiency of the wastewater was satisfied.

A Comparative Study on Power Generation Characteristics of Permanent Magnet Synchronous Generators for Green Ship

  • Kato, Shinji;Cho, Gyeong-Rae;Michihira, Masakazu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권3호
    • /
    • pp.378-386
    • /
    • 2012
  • For reduction of the amount of CO2 emitted from ships, power generation characteristics of two power generation systems consisting of a high-efficiency permanent magnet synchronous generator and diode bridge rictifiers are discussed in this paper. One of the discussed systems has three-phase stator windings, and the other has two sets of three-phase (six-phase) stator windings to reduce pulsation in the electromagnetic torque and DC current. Experimental results reveal that the power generation efficiency of the system having six-phase stator windings is higher than that of the system having three-phase stator windings for a light load. The maximum power generation efficiency of the system having six-phase stator windings is almost the same as that of the system having three-phase stator windings. For the electromagnetic torque of the system having six-phase stator windings, the width of pulsation is about one-fifth compared to the system having three-phase stator windings.

NaBO2의 석출 방지를 위한 첨가제가 NaBH4 가수분해의 수소발생특성에 미치는 영향 (Effect of Additives for Prevention of NaBO2 Precipitation on Hydrogen Generation Properties of NaBH4 Hydrolysis)

  • 오택현;권세진
    • 한국수소및신에너지학회논문집
    • /
    • 제24권1호
    • /
    • pp.1-11
    • /
    • 2013
  • Additives such as glycerol, methanol, acetone, and ethanol were used to prevent $NaBO_2$ from precipitation, and their effects on hydrogen generation properties of $NaBH_4$ hydrolysis were investigated. When the concentration of additives was 5 wt%, the additives such as methanol, acetone, and ethanol could not prevent $NaBO_2$ precipitation. Although glycerol prevented $NaBO_2$ precipitation, conversion efficiency decreased to 78.0% due to its viscosity. Based on test results, hydrogen generation tests were also performed at various concentration of glycerol and methanol to investigate the concentration effects on hydrogen generation properties. As the concentration of glycerol increased from 1 wt% to 3 wt%, conversion efficiency increased owing to additive effect. When its concentration increased to 5 wt%, conversion efficiency decreased due to its viscosity. As the concentration of methanol increased from 5 wt% to 10 wt%, conversion efficiency increased owing to additive effect. When its concentration increased to 15 wt%, conversion efficiency decreased due to $NaB(OCH_3)_4$ precipitate. Although conversion efficiency decreased about 1% when 3 wt% glycerol was added, $NaBO_2$ precipitation was prevented. Consequently, addition of 3 wt% glycerol to $NaBH_4$ solution improves stability of hydrogen generation system.

기수지역 선박평형수의 염소 생성 효율에 미치는 전기화학 처리의 영향 (Effect of Electrochemical Treatment on the Chlorine Generation Efficiency of Ballast Water in the Brackish Zone)

  • 최용선;이유기
    • 한국재료학회지
    • /
    • 제29권1호
    • /
    • pp.16-22
    • /
    • 2019
  • Indirect oxidation using chlorine species oxidizing agents is often effective in wastewater treatment using an electrochemical oxidation process. When chlorine ions are contained in the wastewater, oxidizing agents of various chlorine species are produced during electrolysis. In a ballast water management system, it is also used to treat ballast water by electrolyzing seawater to produce a chlorine species oxidizer. However, ballast water in the brackish zone and some wastewater has a low chlorine ion concentration. Therefore, it is necessary to study the chlorine generation current efficiency at various chlorine concentration conditions. In this study, the chlorine generating current efficiency of a boron-doped diamond(BDD) electrode and insoluble electrodes are compared with various chloride ion concentrations. The results of this study show that the current efficiency of the BDD electrode is better than that of the insoluble electrodes. The chlorine generation current efficiency is better in the order of BDD, MMO(mixed metal oxide), $Ti/RuO_2$, and $Ti/IrO_2$ electrodes. In particular, when the concentration of sodium chloride is 10 g/L or less, the current efficiency of the BDD electrode is excellent.

가정용 연료전지 시스템의 연료/공기 이용률 최적화 (Optimization of Anodic/cathodic Utilization for a Residential Power Generation System)

  • 석동훈;김민진;이진호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.93.1-93.1
    • /
    • 2011
  • To obtain higher power efficiency of Residential Power Generation System(RPG), it is needed to operate system on optimized stoichiometric ratio of fuel and air. In this paper, optimizing stoichiometric ratio of fuel/air is conducted through systematic experiments and modeling. Based on fundamental principles and experimental data, constraints are chosen. Using these stoichiometric ratios as decision variables, maximum power efficiency of system could be found. As a result of research, power efficiency of RPG system is improved.

  • PDF