• Title/Summary/Keyword: generated voltage

Search Result 1,370, Processing Time 0.032 seconds

Roles of Reactive Oxygen Species on Neuronal Excitability in Rat Substantia Gelatinosa Neurons (척수 아교질 신경세포의 흥분성에 대한 활성산소종의 역할)

  • Choi, Jeong-Hee;Kim, Jae-Hyo;Lim, Sung-Jun;Park, Byung-Rim;Kwon, Kang-Beom
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.432-437
    • /
    • 2007
  • Reactive oxygen species (ROS) are toxic agents that may be involved in various neurodegenerative diseases. Recent studies indicate that ROS are also involved in persistent pain through a spinal mechanism. In the present study, whole cell patch clamp recordings were carried out on substantia gelatinosa (SG) neurons in spinal cord slice of neonatal rats to investigate the effects of ROS on neuronal excitability and excitatory synaptic transmission. In current clamp condition, tert-buthyl hydroperoxide (t-BuOOH), an ROS donor, induced a electrical hyperexcitability during t-BuOOH wash-out followed by a brief inhibition of excitability in SG neurons. Application of t-BuOOH depolarized membrane potential of SG neurons and increased the neuronal firing frequencies evoked by depolarizing current pulses. Phenyl-N-tert-buthylnitrone (PBN), an ROS scavenger, antagonized t-BuOOH induced hyperexcitability. IN voltage clamp conditions, t-BuOOH increased the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs). In order to determine the site of action of t-BuOOH, miniature excitatory postsynaptic currents (mEPSCs) were recorded. t-BuOOH increased the frequency and amplitude of mEPSCs, indicating that it may modulate the excitability of the SG neurons via pre- and postsynaptic actions. These data suggest that ROS generated by peripheral nerve injury can induce central sensitization in spinal cord.

Influence of Ne-Xe Gas Mixture Ratio on the Extreme Ultraviolet (EUV) Emission Measurement from the Coaxially Focused Plasma

  • Lee, Sung-Hee;Hong, Young-June;Choi, Duk-In;Uhm, Han-Sup;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.220-220
    • /
    • 2011
  • The Ne-Xe plasmas in dense plasma-focus device with coaxial electrodes were generated for extreme ultraviolet (EUV) lithography. The influence of gas mixture ratio, Ne-Xe (1, 10, 15, 20, 25, 30, 50%) mixture gas, on EUV emission measurement, EUV intensity and electron temperature in the coaxially focused plasma were investigated. An input voltage of 4.5 kV was applied to the capacitor bank of 1.53mF and the diode chamber was filled with Ne-Xe mixture gas at a prescribed pressure. The inner surface of the cylindrical cathode was lined by an acetal insulator. The anode was made of tin metal. The EUV emission signal of the wavelength in the range of 6~16 nm has been detected by a photo-detector (AXUV-100 Zr/C, IRD). The visible emission line was also detected by the composite-grating spectrometer of the working wavelength range of 200~1100 nm (HR 4000CG). The electron temperature is obtained by the optical emission spectroscopy (OES) and measured by the Boltzmann plot with the assumption of local thermodynamic equilibrium (LTE).

  • PDF

Rear Surface Passivation with Al2O3 Layer by Reactive Magnetron Sputtering for High-Efficiency Silicon Solar Cell

  • Moon, Sun-Woo;Kim, Eun-Kyeom;Park, Won-Woong;Jeon, Jun-Hong;Choi, Jin-Young;Kim, Dong-Hwan;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.211-211
    • /
    • 2012
  • The electrical loss of the photo-generated carriers is dominated by the recombination at the metal- semiconductor interface. In order to enhance the performance of the solar cells, many studies have been performed on the surface treatment with passivation layer like SiN, SiO2, Al2O3, and a-Si:H. In this work, Al2O3 thin films were investigated to reduce recombination at surface. The Al2O3 thin films have two advantages, such as good passivation properties and back surface field (BSF) effect at rear surface. It is usually deposited by atomic layer deposition (ALD) technique. However, ALD process is a very expensive process and it has rather low deposition rate. In this study, the ICP-assisted reactive magnetron sputtering method was used to deposit Al2O3 thin films. For optimization of the properties of the Al2O3 thin film, various fabrication conditions were controlled, such as ICP RF power, substrate bias voltage and deposition temperature, and argon to oxygen ratio. Chemical states and atomic concentration ratio were analyzed by x-ray photoelectron spectroscopy (XPS). In order to investigate the electrical properties, Al/(Al2O3 or SiO2,/Al2O3)/Si (MIS) devices were fabricated and characterized using the C-V measurement technique (HP 4284A). The detailed characteristics of the Al2O3 passivation thin films manufactured by ICP-assisted reactive magnetron sputtering technique will be shown and discussed.

  • PDF

Measurement of EUV Emission and its Plasma Parameters Generated from the Coaxial Plasma Focus of Mather and Hypocycloidal Pinched Electrodes

  • Lee, Sung-Hee;Lee, Kyung-Ae;Hong, Young-June;Uhm, Han-Sup;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.332-332
    • /
    • 2011
  • The extreme ultraviolet (EUV) radiation, whose wavelength is from 120 nm down to 10 nm, and the energy from 10 eV up to 124 eV, is widely utilized such as in photoelectron spectroscopy, solar imaging, especially in lithography and soft x-ray microscopy. In this study, we have investigated the plasma diagnostics as well as the debris characteristics between the two types of dense plasma focusing devices with coaxial electrodes of Mather and hypocycloidal pinch (HCP), respectively. The EUV emission intensity, electron temperature and plasma density have been investigated in these cylindrical focused plasma along with the debris characteristics. An input voltage of 5 kV has been applied to the capacitor bank of 1.53 uF and the diode chamber has been filled with Ar gas at pressure ranged from 1 mTorr and 180 mTorr. The inner surface of the cathode was covered by polyacetal insulator. The central anode electrode has been made of tin. The wavelength of the EUV emission has been measured to be in the range of 6~16 nm by a photo-detector (AXUV-100 Zr/C, IRD). The visible emission has also been measured by the spectrometer with the wavelength range of 200~1,100 nm. The electron temperature and plasma density have been measured by the Boltzmann plot and Stark broadening methods, respectively, under the assumption of local thermodynamic equilibrium (LTE).

  • PDF

Observation of Plasma Shape by Continuous dc and Pulsed dc (직류 방전과 펄스 직류 방전에 의한 플라즈마 형상 관찰)

  • Yang, Won-Kyun;Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.3
    • /
    • pp.133-138
    • /
    • 2009
  • Effects of bipolar pulse driving frequency between 50 kHz and 250 kHz on the discharge shapes were analyzed by measuring plasma characteristics by OES (Optical Emission Spectroscopy) and Langmuir probe. Plasma characteristics were modeled by a simple electric field analysis and fluid plasma modeling. Discharge shapes by a continuous dc and bipolar pulsed dc were different as a dome-type and a vertical column-type at the cathode. From OES, the intensity of 811.5 nm wavelength, the one of the main peaks of Ar, decreased to about 43% from a continuous dc to 100 kHz. For increasing from 100 kHz to 250 kHz, the intensity of 811.5 nm wavelength also decreased by 46%. The electron density decreased by 74% and the electron temperature increased by 36% at the specific position due to the smaller and denser discharge shape for increasing pulse frequency. Through the numerical analysis, the negative glow shape of a continuous dc were similar to the electric potential distribution by FEM (Finite Element Method). For the bipolar pulsed dc, we found that the electron temperature increased to maximum 10 eV due to the voltage spikes by the fast electron acceleration generated in pre-sheath. This may induce the electrons and ions from plasma to increase the energetic substrate bombardment for the dense thin film growth.

Characterization of Electrical Properties of Si Nanocrystals Embedded in a SiO$_{2}$ Layer by Scanning Probe Microscopy (Scanning Probe Microscopy를 이용한 국소영역에서의 실리콘 나노크리스탈의 전기적 특성 분석)

  • Kim, Jung-Min;Her, Hyun-Jung;Kang, Chi-Jung;Kim, Yong-Sang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.10
    • /
    • pp.438-442
    • /
    • 2005
  • Si nanocrystal (Si NC) memory device has several advantages such as better retention, lower operating voltage, reduced punch-through and consequently a smaller cell area, suppressed leakage current. However, the physical and electrical reasons for this behavior are not completely understood but could be related to interface states of Si NCs. In order to find out this effect, we characterized electrical properties of Si NCs embedded in a SiO$_{2}$ layer by scanning probe microscopy (SPM). The Si NCs were generated by the laser ablation method with compressed Si powder and followed by a sharpening oxidation. In this step Si NCs are capped with a thin oxide layer with the thickness of 1$\~$2 nm for isolation and the size control. The size of 51 NCs is in the range of 10$\~$50 m and the density around 10$^{11}$/cm$^{2}$ It also affects the interface states of Si NCs, resulting in the change of electrical properties. Using a conducting tip, the charge was injected directly into each Si NC, and the image contrast change and dC/dV curve shift due to the trapped charges were monitored. The results were compared with C-V characteristics of the conventional MOS capacitor structure.

Liquid Crystal Alignment Effect and Electro-Optical Characteristics of TN-LCD on a-C:H Thin Films (a-C:H 박막을 이용한 액정 배향 효과 및 TN-LCD 의 전기광학 특성)

  • Hwang, Jeong-Yeon;Jo, Yong-Min;Rho, Soon-Jun;Baik, Hong-Koo;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.124-127
    • /
    • 2002
  • LC aligning capabilities and the variation of pretilt angles with ion beam irradiation on the a-C:H thin films, and electro-optical (EO) performances of the ion beam aligned twisted nematic (TN)-liquid crystal display (LCD) with oblique ion beam exposure on the a-C:H thin film were studied. A high pretilt angle of $3.5{^{\circ}}$ via ion beam irradiation on the a-C:H thin film was measured. Also, the LC pretilt angle decreased due to the increase in surface roughness at over 2 min of IB exposure time. It is considered that this roughness increase due to increasing IB exposure time that generated destroy of oriented rings of atoms related to LC alignment. An excellent voltage-transmittance (V-T) curve of the ion beam aligned TN-LCD was observed with oblique ion beam exposure on the a-C:H thin film for 1 min. Also, a faster response time for the ion beam aligned TN-LCD with oblique ion beam exposure on the a-C:H thin film for 1 min can be achieved. Finally, the residual DC property of the ion beam aligned TN-LCD with ion beam exposure of 1 min on the a-C:H thin film is almost same as that of the rubbing aligned TN-LCD on a PI surface.

  • PDF

Micro-gap DBD Plasma and Its Applications

  • Zhang, Zhitao;Liu, Cheng;Bai, Mindi;Yang, Bo;Mao, Chengqi
    • Journal of the Speleological Society of Korea
    • /
    • no.76
    • /
    • pp.37-42
    • /
    • 2006
  • The Dielectric Barrier Discharge (DBD) is a nonequilibrium gas discharge that is generated in the space between two electrodes, which are separated by an insulating dielectric layer. The dielectric layer can be put on either of the two electrodes or be inserted in the space between two electrodes. If an AC or pulse high voltage is applied to the electrodes that is operated at applied frequency from 50Hz to several MHz and applied voltages from a few to a few tens of kilovolts rms, the breakdown can occur in working gas, resulting in large numbers of micro-discharges across the gap, the gas discharge is the so called DBD. Compared with most other means for nonequilibrium discharges, the main advantage of the DBD is that active species for chemical reaction can be produced at low temperature and atmospheric pressure without the vacuum set up, it also presents many unique physical and chemical process including light, heat, sound and electricity. This has led to a number of important applications such as ozone synthesizing, UV lamp house, CO2 lasers, et al. In recent years, due to its potential applications in plasma chemistry, semiconductor etching, pollution control, nanometer material and large area flat plasma display panels, DBD has received intensive attention from many researchers and is becoming a hot topic in the field of non-thermal plasma.

a-Si:H Photodiode Using Alumina Thin Film Barrier

  • Hur Chang-Wu;Dimitrijev Sima
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.4
    • /
    • pp.179-183
    • /
    • 2005
  • A photodiode capable of obtaining a sufficient photo/ dark current ratio at both forward bias state and reverse bias state is proposed. The photodiode includes a glass substrate, an aluminum film formed as a lower electrode over the glass substrate, an alumina film formed as an insulator barrier over the aluminum film, a hydrogenated amorphous silicon film formed as a photo conduction layer over a portion of the alumina film, and a transparent conduction film formed as an upper electrode over the hydro-generated amorphous silicon film. A good quality alumina $(Al_2O_3)$ film is formed by oxidation of aluminum film using electrolyte solution of succinic acid. Alumina is used as a potential barrier between amorphous silicon and aluminum. It controls dark-current restriction. In case of photodiodes made by changing the formation condition of alumina, we can obtain a stable dark current $(\~10^{-12}A)$ in alumina thickness below $1000{\AA}$. At the reverse bias state of the negative voltage in ITO (Indium Tin Oxide), the photo current has substantially constant value of $5{\times}10^{-9}$ A at light scan of 100 1x. On the other hand, the photo/dark current ratios become higher at smaller thicknesses of the alumina film. Therefore, the alumina film is used as a thin insulator barrier, which is distinct from the conventional concept of forming the insulator barrier layer near the transparent conduction film. Also, the structure with the insulator thin barrier layer formed near the lower electrode, opposed to the ITO film, solves the interface problem of the ITO film because it provides an improved photo current/dark current ratio.

The characteristics of source/drain structure for MOS typed device using Schottky barrier junction (Schottky 장벽 접합을 이용한 MOS형 소자의 소오스/드레인 구조의 특성)

  • 유장열
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.1
    • /
    • pp.7-13
    • /
    • 1998
  • The VLSI devices of submicron level trend to have a lowering of reliability because of hot carriers by two dimensional influences which are caused by short channel effects and which are not generated in a long channel devices. In order to minimize the two dimensional influences, much research has been made into various types of source/drain structures. MOS typed tunnel transistor with Schottky barrier junctions at source/drain, which has the advantages in fabrication process, downsizing and response speed, has been proposed. The experimental device was fabricated with p type silicon, and manifested the transistor action, showing the unsaturated output characteristics and the high transconductance comparing with that in field effect mode. The results of trial indicate for better performance as follows; high doped channel layer to lower the driving voltage, high resistivity substrate to reduce the leakage current from the substrate to drain.

  • PDF