• Title/Summary/Keyword: generated electricity

Search Result 277, Processing Time 0.026 seconds

Asterisk(*) Array structure based power reduction power distribution board (애스터리스크(*) 배열구조 기반 전력저감 수배전반)

  • Kim, Mi-Suk;Park, Dong-Sam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.138-144
    • /
    • 2017
  • With the increase in power consumption due to the surge in the demand for power, it is necessary to improve the quality or design of the power (supply) for the purpose of reducing the energy consumption and so reduce the power loss. The switchboard is a mechanical device that receives electricity from the electricity generation facilities of KEPCO and divides it into the facilities required for each building. Switchboards generally consist of enclosures, switches, power conductors, and control components. This study deals with energized power conductors, which constitute the main element in the switchboard. Through the measurement of the effective ac resistance, it was confirmed that the vertical array structure of the conventional type plate conductor is inefficient. If the effective AC resistance increases significantly, the sectional area of the conductor becomes relatively large due to the skin effect. In this study, we studied the energy and material savings that could be obtained using the asterisk (*) array structure, which minimizes the effective ac resistance by reducing the skin effect. The core technology principle of this study is the energy saving switchgear based on conductor resistance reduction technology utilizing the asterisk array structure. The present invention involves a plate-shaped conductor arrangement structure capable of canceling out the magnetic field generated on each of the plate conductors (rst or abc) of the AC power supply in the power distribution panel by mutual action. The effect of this structure is to reduce the amount of inductive reactance due to the increase in the cross-sectional area and reduction of the effective AC resistance.

Configuration of Fuel Cell Power Generation System through Power Conversion Device Design (전력변환장치 설계를 통한 연료전지 발전시스템 구성)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.129-134
    • /
    • 2021
  • Recently, the demand for electricity is gradually increasing due to the rapid industrial development and the improvement of living standards. In the case of Korea, which is highly dependent on fossil fuels due to such a surge in electricity demand, reduction and freezing of greenhouse gas emissions due to international environmental regulations will immediately lead to a contraction in industrial activities. Accordingly, there are many difficulties in competition with advanced countries that want to link the environment with the country's industrial production activities, and the development of alternative energy as a countermeasure is of great interest around the world. Among these new power generation methods, small-scale power generation facilities with relatively small capacity include photovoltaic generation, wind power generation, and fuel cell generation. Among them, the fuel cell attracts the most attention in consideration of continuous operation, high power generation efficiency, and long-term durability, which are important factors for practical use. Therefore, in this paper, the fuel cell power generation system was researched and constructed by designing the power conversion circuit necessary to finally obtain the AC power used in our daily life by using the DC power generated from the fuel cell as an input.

Development of Operation Control and AC/DC Conversion Integrated Device for DC Power Application of Small Wind Power Generation System (소형 풍력발전시스템의 직류전원 적용을 위한 운전제어 및 AC/DC변환 통합장치 개발)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.179-184
    • /
    • 2019
  • In many countries, such as developing countries where electricity is scarce, small wind turbines in the form of Off Grid are an effective solution to solve power supply problems. In some countries, the expansion of power systems and the decline of electricity-intensive areas have led to the use of small wind power in urban road lighting, mobile communications base stations, aquaculture and seawater desalination. With this change, the size of the small wind power industry is expected to have greater potential than large-scale wind power. In the case of small wind power generators, the generator is controlled at a variable speed, and the voltage and current generated by the generator have many harmonic components. To solve this problem, the AC to DC converter to be studied in this paper is a three-phase step-up type converter with a single switch. The inductor current is controlled in discontinuous mode, and has a characteristic of having a unit power factor by eliminating the harmonic of the input current. The proposed converter is composed of LCL filter and three phase rectification boost converter at the input stage and a single phase full bridge for grid connection. It is a control system with energy storage system(ESS) that the system stabilization can be pursued against the electric power.

Primary Energy Conversion in a Direct Drive Turbine for Wave Power Generation

  • Prasad, Deepak Divashkar;Zullah, Mohammed Asid;Kim, You-Taek;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.237.1-237.1
    • /
    • 2010
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Ocean contains energy in form of thermal energy and mechanical energy: thermal energy from solar radiation and mechanical energy from the waves and tides. The current paper looks at generating power using waves. The primary objective of the present study is to maximize the primary energy conversion (first stage conversion) of the base model by making some design changes. The model entire consisted of a numerical wave tank and the turbine section. The turbine section had three components; front guide nozzle, augmentation channel and the rear chamber. The augmentation channel further consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. Different front guide nozzle configuration and rear chamber design were studied. As mentioned, a numerical wave tank was utilized to generate waves of desired properties and later the turbine section was integrated. The waves in the numerical wave tank were generated by a piston type wave maker which was located at the wave tank inlet. The inlet which was modeled as a plate wall which moved sinusoidally with the general function, $x=asin{\omega}t$. In addition to primary energy conversion, observation of flow characteristics, pressure and the velocity in the augmentation channel, rear chamber as well as the front guide nozzle are presented in the paper. The analysis was performed using the commercial code of the ANSYS-CFX. The base model recorded water power of 29.9 W. After making the changes, the best model obtained water power of 37.1 W which represents an increase of approximately 24% in water power and primary energy conversion.

  • PDF

Research Plan to improve Power Generation Efficiency of Photovoltaic Units using Photovoltaic Module Cooling System (태양광모듈 냉각장치를 이용한 태양광발전장치 발전효율 향상을 위한 연구방안)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.199-204
    • /
    • 2020
  • In case of the silicon solar panel being used in Korea, the production specification is designed to give maximum output at the limit of -0.5 to 0.05℃, so the output of 0.45~0.55% decreases when the temperature rises by 1℃. As a result, the photovoltaic power generation is reduced according to the surface temperature rise of the photovoltaic module due to the characteristics of the solar cell. The decrease in output reduces the efficiency of photovoltaic power generation, and if the efficiency decreases, the result is that the profit of electricity sales according to the amount of photovoltaic power generation decreases. Therefore, this paper proposes a method of spraying cooling air to the lower (or surrounding) of the photovoltaic module when it is identified above the set temperature by the temperature detection sensor. In addition, the amount of power generated is increased by utilizing the lost solar energy, and by applying cooling function through cooling air, the power generation can be further increased.

Thermo-fluid engineering in deep geothermal energy

  • Kim, Yeong-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.84.1-84.1
    • /
    • 2015
  • Recent years in particular in Korea see intensive interests in a deep geothermal engineering and its application in different uses as far as from direct uses to power generation sectors, that are achieved by harnessing hot energy sources from the earth. For instance widespread interest has been generated because the geothermal energy is the source that one extracts it for more than 20 hours per day and for about 30 years of an operation of the plant, which enables to give base load as for heating as well as an electric generation. In retrospect, shallow geothermal energy using heat pumps is commonplace in Korea while the deep geothermal is in the early stage of the development. Geothermal energies in view of the way of extracting heat are mainly categorized into several types such as a single well system, a hydrothermal system, an enhanced geothermal system (EGS) etc. In this talk, this speaker focuses on the thermo-fluid engineering of the single well system by introducing the modeling in order to harness hot fluid that is thermally balanced with the fluid of an injection well, which provides a challenge to assess the life time of the well. To avoid the loss of the temperature in producing the hot fluid, a specialized pipe or a borehole heat exchanger has been designed, and its concept is introduced. On the other hand, a binary system or an organic Rankine cycle, which provides the methodology to convert the heat into an electricity, is briefly introduced. Some experimental results of the binary system which has been constructed in our lab will be presented. Lastly as for the future direction, some comments for the industrialization of the deep geothermal energy in this country will be discussed.

  • PDF

Exhaust-Gas Heat-Recovery System of Marine Diesel Engine (I) - Energy Efficiency Comparison for Working Fluids of R245fa and Water - (선박용 디젤엔진의 배기가스 열회수 시스템 (I) - R245fa 및 Water 의 작동유체에 대한 에너지효율 비교 -)

  • Choi, Byung-Chul;Kim, Young-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.293-299
    • /
    • 2012
  • The thermodynamic efficiency characteristics of R245fa and water as working fluids have been analyzed for the electricity generation system applying the Rankine cycle to recover the waste heat of the exhaust gas from a diesel engine for the propulsion of a large ship. The theoretical calculation results showed that the cycle, system, and total efficiencies were improved as the turbine inlet pressure was increased for R245fa at a fixed mass flow rate. In addition, the net work rate generated by the Rankine cycle was elevated with increasing turbine inlet pressure. In the case of water, however, the maximum system efficiencies were demonstrated at relatively small ratios of mass flow rate and turbine inlet pressure, respectively, compared to those of R245fa. The optimized values of the net power of the cycle, system efficiency, and total efficiency for water had relatively large values compared to those of R245fa.

Conceptual Design of Self-Weighing Support Structure for Offshore Wind Turbines and Self-Floating Field Test (자중조절형 해상풍력 지지구조 개념설계 및 부유이송 현장시험)

  • Kim, Seoktae;Kim, Donghyun;Kang, Keumseok;Jung, Minuk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.631-638
    • /
    • 2016
  • Offshore wind power can be an alternative for onshore wind power which suffers from not only civil complaints regarding to landscape damage and noise but also wind power siting due to lack of onshore site candidates. Compared to onshore wind power, offshore wind power is free from these problems considering that generally the sites are far enough from the coast. And more electricity is generated in offshore wind turbines due to abundant offshore wind resources. However high installation costs of offshore turbines could deteriorate the economical efficiency. The main cause of the high installation costs comes from a long-term lease of the heavy marine equipment and the consequential high rental cost. In this paper, the conceptual design of the support structure for offshore wind turbines will be suggested for the installation of them with less heavy marine equipment.

Development of Heating Device Using Concentrator Solar Cells (집광형 태양전지를 이용한 난방장치 개발)

  • Lee, Dong Il;Baek, Seung Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.49-56
    • /
    • 2014
  • In this study, the generation efficiency of the limited area of a concentrator solar cell was increased by using a solar concentrator and a tracking device. Heat generated by the solar cell was collected using a thermal absorber for supplying hot water or heating. Thus, the concentrator solar cell system provided electricity and heat simultaneously. Tracking of the sun by detecting the sun's position, repositioning of heating device towards the east after sunset, and shutting down of system after sunset were successfully implemented using an illuminance sensor (CdS) and Simulink, a commercial software package. We performed parametric analysis of the velocity, fin installation, and entrance location with respect to the operating temperature of the concentrator solar cell. A heat transfer simulation model was developed for comparing the actual temperature profiles of the concentrator solar cell and thermal absorber, and good agreement was found between the results of the simulations and the experiments.

Optimization and Molecular Characterization of Exoelectrogenic Isolates for Enhanced Microbial Fuel Cell Performance

  • Nwagu, Kingsley Ekene;Ekpo, Imo A.;Ekaluo, Benjamin Utip;Ubi, Godwin Michael;Elemba, Munachimso Odinakachi;Victor, Uzoh Chukwuma
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.621-629
    • /
    • 2019
  • In this study we attempted to screen bacteria and fungi that generate electricity while treating wastewater using optimized double-chamber microbial fuel cell (MFC) system parameters. Optimization was carried out for five best exoelectrogenic isolates (two bacteria and three fungi) at pH values of 6.0, 7.5, 8.5, and 9.5, and temperatures of 30, 35, 40, and 45℃; the generated power densities were measured using a digital multimeter (DT9205A). The isolates were identified using molecular characterization, followed by the phylogenetic analysis of isolates with known exoelectrogenic microorganisms. The bacterium, Proteus species, N6 (KX548358.1) and fungus, Candida parapsilosis, S10 (KX548360) produced the highest power densities of 1.59 and 1.55 W/m2 (at a pH of 8.5 and temperatures of 35 and 40℃) within 24 h, respectively. Other fungi-Clavispora lusitaniae, S9 (KX548359.1) at 40℃, Clavispora lusitaniae, S14 (KX548361.1) at 35℃-and bacterium-Providencia species, N4 (KX548357.1) at 40℃-produced power densities of 1.51, 1.46, and 1.44 W/m2, respectively within 24 h. The MFCs achieved higher power densities at a pH of 8.5, temperature of 40℃ within 24 h. The bacterial isolates have a close evolutionary relationship with other known exoelectrogenic microorganisms. These findings helped us determine the optimal pH, temperature, evolutionary relationship, and exoelectrogenic fungal species other than bacteria that enhance MFC performance.