• Title/Summary/Keyword: generated electricity

Search Result 277, Processing Time 0.027 seconds

Economic Load Dispatch Considering Power System Reliability under the Deregulated Electricity Market (규제완화된 전력시장 하에서의 전력계통 신뢰도를 고려한 경제부하배분)

  • Kim, Hong-Sik;Lim, Chae-Hyeun;Choi, Jae-Seok;Cha, Jun-Min;Rho, Dae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.391-393
    • /
    • 2000
  • This paper presents an new algorithm for the economic load dispatch considering the reliability level constraints of composite power system under deregulated electricity market. It is the traditional ELD problem that generation powers have been dispatched In order to minimize total fuel cost subjected to constraints which sum of powers generated must equal the received load and no violating lower and upper limit constraints on generation. Under deregulated electricity market, however, generation powers of a pool have to be reallocated newly in order to satisfy the reliability differentiated level required at a load point because of a reliability differentiated electricity service which is a part of the priority service. In this study, new economic load dispatch algorithm for reallocating the generation powers of a pool in order to satisfy the reliability differentiated level under deregulated competitive electricity market is proposed. The uncertainties of not only generators but also transmission lines are considered fer the reliability evaluation. The characteristics and effectiveness of this methodology are illustrated by the case studies on MRBTS and IEEE-RTS.

  • PDF

Analysis and Prediction of Energy Consumption Using Supervised Machine Learning Techniques: A Study of Libyan Electricity Company Data

  • Ashraf Mohammed Abusida;Aybaba Hancerliogullari
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.10-16
    • /
    • 2023
  • The ever-increasing amount of data generated by various industries and systems has led to the development of data mining techniques as a means to extract valuable insights and knowledge from such data. The electrical energy industry is no exception, with the large amounts of data generated by SCADA systems. This study focuses on the analysis of historical data recorded in the SCADA database of the Libyan Electricity Company. The database, spanned from January 1st, 2013, to December 31st, 2022, contains records of daily date and hour, energy production, temperature, humidity, wind speed, and energy consumption levels. The data was pre-processed and analyzed using the WEKA tool and the Apriori algorithm, a supervised machine learning technique. The aim of the study was to extract association rules that would assist decision-makers in making informed decisions with greater efficiency and reduced costs. The results obtained from the study were evaluated in terms of accuracy and production time, and the conclusion of the study shows that the results are promising and encouraging for future use in the Libyan Electricity Company. The study highlights the importance of data mining and the benefits of utilizing machine learning technology in decision-making processes.

Analysis of Characteristics on the Static Electricity by Streaming Electrification (유동대전에 의한 정전기 특성 분석)

  • Kim, Gil-Tae;Lee, Jae-Keun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.42-46
    • /
    • 2005
  • The static electricity by thinner flow and discharge energy is investigated experimentally for the purpose of preventing the electrostatic discharge and damage. Test system for evaluating streaming electrification consists of a teflon pipe, a reservoir tank a pump, flowmeters and an electrometer. When dielectric liquid flows through a pipe from one vessel to another, the potential difference generated in the collecting vessel is due to the accumulation of charges. These charges result from the convection of a part of the electrical double layer existing in the tube at the contact between the liquid and the inner wall. When the fluid velocity increases, the electric current increases proportionally. The charging current and accumulated charges by streaming electrification at the thinner velocity of 40cm/s are measured a range of 5 nA and $0.27{\mu}C$ respectively. This amount of static discharge energy generated by streaming electrification is enough to ignite flammable solvent. Therefore surface electric potential should decrease by using electrostatic shielding and ground.

Performance Evaluation of BIPV Systems Applied in School Buildings (학교 건축에 대한 BIPV시스템의 성능 평가)

  • Park, Kyung-Eun;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.11 no.5
    • /
    • pp.14-23
    • /
    • 2004
  • Building-integrated photovoltaic(BIPV) systems can operate as a multi-functional building components, which generates electricity and serves as part of building envelope. It can be regarded as a new architectural elements, adding to the building's aesthetics. Besides of these benefits, the application of PV systems into school buildings tends to play an important role in energy education to students. In this context, this study aims to analyse the applicability of PV systems into school buildings. For an existing school building, four types of BIPV designs were developed; rooftops, wall-attached, wall-mounted with angle, and sunshading device. Based on energy modeling of those BIPV systems, the whole 60.1kWp rated PV installation is expected to yield about 65.6MWh of electricity, that is about 50% more than the annual electricity consumption of the school, 44MWh. It was also found that the applicability of the PV systems into the school building was very high, and the rooftop systems with the optimized angle was the most efficient in energy production, followed by sunshading, wall-mounted with angle and wall-attached. It concludes that school buildings have a reasonable potential to apply PV systems in the aspects of building elements and electricity production.

Load Control between PV Power Plants and Diesel Generators

  • Mohamed Khalil Abdalla MohamedAli;AISHA HASSAN ABDALLA HASHIM;OTHMAN KHALIFA
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.33-40
    • /
    • 2024
  • Introducing renewable energy sources, such as wind and photovoltaic arrays, in microgrids that supply remote regions with electricity represents a significant leap in electricity generation. Combining photovoltaic panels and diesel engines is one of the most common ways to supply electricity to rural communities. Such hybrid systems can reduce the cost of electricity generation in these remote power systems because they use free energy to balance the power generated by diesel engines. However, the combination of renewable energy sources and diesel engines tends to complicate the sizing and control of the entire system due to the intermittent nature of renewable energy sources. This study sought to investigate this issue in depth. It proposes a robust hybrid controller that can be used to facilitate optimum power sharing between a PV power source and diesel generators based on the dynamics of the available PV energy at any given time. The study also describes a hybrid PV-diesel power plant's essential functional parts that produce electricity for a microgrid using a renewable energy source. Power control needs to be adjusted to reduce the cost of power generation.

Capacitor Bank Assisted Battery Fed Boost Converter for Self-electricity-generated Transportation Cart System (자가발전 이동 카트 시스템을 위한 배터리 - 캐패시터 뱅크를 갖는 부스트 컨버터)

  • Kong, Sung-Jae;Yang, Tae-Cheol;Kang, Kyung-Soo;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • A problem exists in the conventional transportation cart applications, in which an external power supply with mechanical contact connection (bus bar connection) is required to drive the motor. Therefore, continuous effort for maintenance is required, aside from the expensive bus bar connector. To solve this problem, a self-electricity-generated transportation cart system without bus bar has recently been introduced. In this system, a battery needs to store the power of the generated wheel, and a boost converter, which converts the low battery voltage to high bus voltage to drive the motor inverter, is necessary. However, since the instantaneous large current required for starting the motor is supplied from the battery, a battery with large size and volume should be adopted to withstand this large current. In this study, a boost converter that can supply a large instantaneous current by using super Capacitor string is proposed. The proposed converter can be realized with a small size and volume compared with the conventional battery-fed boost converter. Operational principles, analysis, and design of the proposed converter are presented, and experimental results are provided to validate the proposed converter.

Development of Smart PCS(Power Conditioning System) Integrating PV/ESS for Home (가정용 태양광/ESS 통합 스마트 PCS 개발)

  • Lee, Sang-Hak
    • Journal of Digital Convergence
    • /
    • v.14 no.7
    • /
    • pp.193-200
    • /
    • 2016
  • Research and development of energy self-consumption introducing photovoltaic and energy storage system at home is very active. This system can manage the home energy in which it charges the electricity generated during the day and uses it during high electricity bills. However, it not yet made up the residential real-time pricing in Korea but it can reduce electricity usage to a certain target on the progressive. In order to introduce the home photovoltaic, it requires PCS(Power Conditioning System). This converts the direct current into alternating current by the electricity generated and used to perform charging and discharging of the energy storage system. The market for self-consumption smart home system is currently increasing because the interests of the general public about solar power, energy storage systems increased. The result of this study is installed on the room environment and the effect was analyzed on the assumption of real-time pricing.

Life Cycle Greenhouse Gas Emission Assessment on Locally Generated Kenaf Residue Biomass Fuel in South Korea (EU RED-II 방법론을 적용한 국내 미이용 바이오매스 케나프 펠릿의 전과정 온실가스 배출량 산정)

  • Youn Il Kim;Sun Young Jung;Youngjae Jo;Sung Yoon;Byung Hwan Um
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.258-264
    • /
    • 2023
  • The greenhouse gas (GHG) emission assessment of kenaf pellet, produced from locally generated kenaf residues in South Korea, has been studied based on the EU RED-II methodology for calculating GHG impact of biomass fuels. Based on the production pathway of kenaf residue pellet and emission coefficients from EU JRC report, the life cycle GHG emission of kenaf residue pellet is assessed as 3.0 gCO2eq/MJpellet and the life cycle GHG emission of electricity generated from kenaf residue pellet is assessed as 11.9 gCO2eq/MJ when electrical efficiency of final conversion is 25%. The potential GHG emission reduction of electricity produced from kenaf pellet is 90.3% compared to the domestic electricity emission factor 42.8 kgCO2eq/MWh. Also, the electricity produced from kenaf pellet can reduce at least 59.6% of GHG emission compared to the electricity produced from imported wood pellets.

Estimation of the electricity demand function using a lagged dependent variable model (내생시차변수모형을 이용한 전력수요함수 추정)

  • Ahn, So-Yeon;Jin, Se-Jun;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.37-44
    • /
    • 2016
  • The demand for electricity has a considerable impact on various energy sectors since electricity is generated from various energy sources. This paper attempts to estimate the electricity demand function and obtain some quantitative information on price and income elasticities of the demand. To this end, we apply a lagged dependent variable model to derive long-run as well as short-run elasticities using the time-series data over the period 1991-2014. Our dependent variable is annual electricity demand. The independent variables include constant term, real price of electricity, and real gross domestic product. The results show that the short-run price and income elasticities of the electricity demand are estimated to be -0.142 and 0.866, respectively. They are statistically significant at the 5% level. That is, the electricity demand is in-elastic with respect to price and income changes in the short-run. The long-run price and income elasticities of the electricity demand are calculated to be -0.210 and 1.287, respectively, which are also statistically meaningful at the 5% level. The electricity demand is still in-elastic with regard to price change in the long-run. However, the electricity demand is elastic regarding income change in the long-run. Therefore, this indicates that the effect of demand-side management policy through price-control is restrictive in both the short- and long-run. The growth in electricity demand following income growth is expected to be more remarkable in the long-run than in the short-run.

Development of a Air-jet Water Sprayer for Dust Generation Control in the Production Sites of Gloves Making Plants (장갑공장의 분진발생 억제를 위한 에어젯 노즐의 개발)

  • Kim, Jin-Hyun;Choi, Hyun-kuk;Kim, Ki-Dong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.2
    • /
    • pp.69-78
    • /
    • 2009
  • Dust in the fabric production sites is increased by the static electricity in air which is generated in the manufacturing process. The static electricity is shown in inverse proportion to humidity of the production sites. The optimum humidity rate for the filament in the production process has been established as 65~75%. Where as, average humidity rate of production site is estimated as 40%. Therefore, it is necessary to raise the humidity rate by 30% to maintain appropriate humidity to control generation of static electricity and dust in the production sites. In this study, a new air-jet water sprayer was developed and it can produce $10{\mu}m$ sprayed particles. When the air-jet water sprayer was operated on the production site dust generation rate was shown far below the environmental standard. It is assumed that when the air jet sprayers was applied to 1,000 fabric machines of 5 gloves making plants, its productivity and rates of operation will be improved by value of about 2.5 billion Won a year.

  • PDF