• Title/Summary/Keyword: generalized topological space

Search Result 47, Processing Time 0.022 seconds

ELEMENTS OF THE KKM THEORY ON CONVEX SPACES

  • Park, Se-Hie
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.1-27
    • /
    • 2008
  • We introduce a new concept of convex spaces and a multimap class K having certain KKM property. From a basic KKM type theorem for a K-map defined on an convex space without any topology, we deduce ten equivalent formulations of the theorem. As applications of the equivalents, in the frame of convex topological spaces, we obtain Fan-Browder type fixed point theorems, almost fixed point theorems for multimaps, mutual relations between the map classes K and B, variational inequalities, the von Neumann type minimax theorems, and the Nash equilibrium theorems.

NONLINEAR VARIATIONAL INEQUALITIES AND FIXED POINT THEOREMS

  • Park, Sehie;Kim, Ilhyung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.139-149
    • /
    • 1989
  • pp.Hartman and G. Stampacchia [6] proved the following theorem in 1966: If f:X.rarw. $R^{n}$ is a continuous map on a compact convex subset X of $R^{n}$ , then there exists $x_{0}$ ..mem.X such that $x_{0}$ , $x_{0}$ -x>.geq.0 for all x.mem.X. This remarkable result has been investigated and generalized by F.E. Browder [1], [2], W. Takahashi [9], S. Park [8] and others. For example, Browder extended this theorem to a map f defined on a compact convex subser X of a topological vector space E into the dual space $E^{*}$; see [2, Theorem 2]. And Takahashi extended Browder's theorem to closed convex sets in topological vector space; see [9, Theorem 3]. In Section 2, we obtain some variational inequalities, especially, generalizations of Browder's and Takahashi's theorems. The generalization of Browder's is an earlier result of the first author [8]. In Section 3, using Theorem 1, we improve and extend some known fixed pint theorems. Theorems 4 and 8 improve Takahashi's results [9, Theorems 5 and 9], respectively. Theorem 4 extends the first author's fixed point theorem [8, Theorem 8] (Theorem 5 in this paper) which is a generalization of Browder [1, Theroem 1]. Theorem 8 extends Theorem 9 which is a generalization of Browder [2, Theorem 3]. Finally, in Section 4, we obtain variational inequalities for multivalued maps by using Theorem 1. We improve Takahashi's results [9, Theorems 21 and 22] which are generalization of Browder [2, Theorem 6] and the Kakutani fixed point theorem [7], respectively.ani fixed point theorem [7], respectively.

  • PDF

On The Reflection And Coreflection

  • Park, Bae-Hun
    • The Mathematical Education
    • /
    • v.16 no.2
    • /
    • pp.22-26
    • /
    • 1978
  • It is shown that a map having an extension to an open map between the Alex-androff base compactifications of its domain and range has a unique such extension. J.S. Wasileski has introduced the Alexandroff base compactifications of Hausdorff spaces endowed with Alexandroff bases. We introduce a definition of morphism between such spaces to obtain a category which we denote by ABC. We prove that the Alexandroff base compactification on objects can be extended to a functor on ABC and that the compact objects give an epireflective subcategory of ABC. For each topological space X there exists a completely regular space $\alpha$X and a surjective continuous function $\alpha$$_{x}$ : Xlongrightarrow$\alpha$X such that for each completely regular space Z and g$\in$C (X, Z) there exists a unique g$\in$C($\alpha$X, 2) with g=g$^{\circ}$$\beta$$_{x}$. Such a pair ($\alpha$$_{x}$, $\alpha$X) is called a completely regularization of X. Let TOP be the category of topological spaces and continuous functions and let CREG be the category of completely regular spaces and continuous functions. The functor $\alpha$ : TOPlongrightarrowCREG is a completely regular reflection functor. For each topological space X there exists a compact Hausdorff space $\beta$X and a dense continuous function $\beta$x : Xlongrightarrow$\beta$X such that for each compact Hausdorff space K and g$\in$C (X, K) there exists a uniqueg$\in$C($\beta$X, K) with g=g$^{\circ}$$\beta$$_{x}$. Such a pair ($\beta$$_{x}$, $\beta$X) is called a Stone-Cech compactification of X. Let COMPT$_2$ be the category of compact Hausdorff spaces and continuous functions. The functor $\beta$ : TOPlongrightarrowCOMPT$_2$ is a compact reflection functor. For each topological space X there exists a realcompact space (equation omitted) and a dense continuous function (equation omitted) such that for each realcompact space Z and g$\in$C(X, 2) there exists a unique g$\in$C (equation omitted) with g=g$^{\circ}$(equation omitted). Such a pair (equation omitted) is called a Hewitt's realcompactification of X. Let RCOM be the category of realcompact spaces and continuous functions. The functor (equation omitted) : TOPlongrightarrowRCOM is a realcompact refection functor. In [2], D. Harris established the existence of a category of spaces and maps on which the Wallman compactification is an epirefiective functor. H. L. Bentley and S. A. Naimpally [1] generalized the result of Harris concerning the functorial properties of the Wallman compactification of a T$_1$-space. J. S. Wasileski [5] constructed a new compactification called Alexandroff base compactification. In order to fix our notations and for the sake of convenience. we begin with recalling reflection and Alexandroff base compactification.

  • PDF

DIGITAL COVERING THEORY AND ITS APPLICATIONS

  • Kim, In-Soo;Han, Sang-Eon
    • Honam Mathematical Journal
    • /
    • v.30 no.4
    • /
    • pp.589-602
    • /
    • 2008
  • As a survey-type article, the paper reviews various digital topological utilities from digital covering theory. Digital covering theory has strongly contributed to the calculation of the digital k-fundamental group of both a digital space(a set with k-adjacency or digital k-graph) and a digital product. Furthermore, it has been used in classifying digital spaces, establishing almost Van Kampen theory which is the digital version of van Kampen theorem in algebrate topology, developing the generalized universal covering property, and so forth. Finally, we remark on the digital k-surface structure of a Cartesian product of two simple closed $k_i$-curves in ${\mathbf{Z}}^n$, $i{\in}{1,2}$.

ON STRONGLY θ-e-CONTINUOUS FUNCTIONS

  • Ozkoc, Murad;Aslim, Gulhan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.1025-1036
    • /
    • 2010
  • A new class of generalized open sets in a topological space, called e-open sets, is introduced and some properties are obtained by Ekici [6]. This class is contained in the class of $\delta$-semi-preopen (or $\delta-\beta$-open) sets and weaker than both $\delta$-semiopen sets and $\delta$-preopen sets. In order to investigate some different properties we introduce two strong form of e-open sets called e-regular sets and e-$\theta$-open sets. By means of e-$\theta$-open sets we also introduce a new class of functions called strongly $\theta$-e-continuous functions which is a generalization of $\theta$-precontinuous functions. Some characterizations concerning strongly $\theta$-e-continuous functions are obtained.

Proposing the Technique of Shape Classification Using Homology (호몰로지를 이용한 형태 분류 기법 제안)

  • Hahn, Hee Il
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.1
    • /
    • pp.10-17
    • /
    • 2018
  • Persistence Betty numbers, which are the rank of the persistent homology, are a generalized version of the size theory widely known as a descriptor for shape analysis. They show robustness to both perturbations of the topological space that represents the object, and perturbations of the function that measures the shape properties of the object. In this paper, we present a shape matching algorithm which is based on the use of persistence Betty numbers. Experimental tests are performed with Kimia dataset to show the effectiveness of the proposed method.

Sensor-Based Path Planning for Planar Two-identical-Link Robots by Generalized Voronoi Graph (일반화된 보로노이 그래프를 이용한 동일 두 링크 로봇의 센서 기반 경로계획)

  • Shao, Ming-Lei;Shin, Kyoo-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.6986-6992
    • /
    • 2014
  • The generalized Voronoi graph (GVG) is a topological map of a constrained environment. This is defined in terms of workspace distance measurements using only sensor-provided information, with a robot having a maximum distance from obstacles, and is the optimum for exploration and obstacle avoidance. This is the safest path for the robot, and is very significant when studying the GVG edges of highly articulated robots. In previous work, the point-GVG edge and Rod-GVG were built with point robot and rod robot using sensor-based control. An attempt was made to use a higher degree of freedom robot to build GVG edges. This paper presents GVG-based a new local roadmap for the two-link robot in the constrained two-dimensional environment. This new local roadmap is called the two-identical-link generalized Voronoi graph (L2-GVG). This is used to explore an unknown planar workspace and build a local roadmap in an unknown configuration space $R^2{\times}T^2$ for a planar two-identical-link robot. The two-identical-link GVG also can be constructed using only sensor-provided information. These results show the more complex properties of two-link-GVG, which are very different from point-GVG and rod-GVG. Furthermore, this approach draws on the experience of other highly articulated robots.