• Title/Summary/Keyword: generalized negative binomial

Search Result 23, Processing Time 0.027 seconds

Negative Binomial Varying Coefficient Partially Linear Models

  • Kim, Young-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.809-817
    • /
    • 2012
  • We propose a semiparametric inference for a generalized varying coefficient partially linear model(VCPLM) for negative binomial data. The VCPLM is useful to model real data in that varying coefficients are a special type of interaction between explanatory variables and partially linear models fit both parametric and nonparametric terms. The negative binomial distribution often arise in modelling count data which usually are overdispersed. The varying coefficient function estimators and regression parameters in generalized VCPLM are obtained by formulating a penalized likelihood through smoothing splines for negative binomial data when the shape parameter is known. The performance of the proposed method is then evaluated by simulations.

Modelling Count Responses with Overdispersion

  • Jeong, Kwang Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.761-770
    • /
    • 2012
  • We frequently encounter outcomes of count that have extra variation. This paper considers several alternative models for overdispersed count responses such as a quasi-Poisson model, zero-inflated Poisson model and a negative binomial model with a special focus on a generalized linear mixed model. We also explain various goodness-of-fit criteria by discussing their appropriateness of applicability and cautions on misuses according to the patterns of response categories. The overdispersion models for counts data have been explained through two examples with different response patterns.

Effects of Overdispersion on Testing for Serial Dependence in the Time Series of Counts Data

  • Kim, Hee-Young;Park, You-Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.6
    • /
    • pp.829-843
    • /
    • 2010
  • To test for the serial dependence in time series of counts data, Jung and Tremayne (2003) evaluated the size and power of several tests under the class of INARMA models based on binomial thinning operations for Poisson marginal distributions. The overdispersion phenomenon(i.e., a variance greater than the expectation) is common in the real world. Overdispersed count data can be modeled by using alternative thinning operations such as random coefficient thinning, iterated thinning, and quasi-binomial thinning. Such thinning operations can lead to time series models of counts with negative binomial or generalized Poisson marginal distributions. This paper examines whether the test statistics used by Jung and Tremayne (2003) on serial dependence in time series of counts data are affected by overdispersion.

MISCLASSIFICATION IN SIZE-BIASED MODIFIED POWER SERIES DISTRIBUTION AND ITS APPLICATIONS

  • Hassan, Anwar;Ahmad, Peer Bilal
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.1
    • /
    • pp.55-72
    • /
    • 2009
  • A misclassified size-biased modified power series distribution (MSBMPSD) where some of the observations corresponding to x = c + 1 are misclassified as x = c with probability $\alpha$, is defined. We obtain its recurrence relations among the raw moments, the central moments and the factorial moments. Discussion of the effect of the misclassification on the variance is considered. To illustrate the situation under consideration some of its particular cases like the size-biased generalized negative binomial (SBGNB), the size-biased generalized Poisson (SBGP) and sizebiased Borel distributions are included. Finally, an example is presented for the size-biased generalized Poisson distribution to illustrate the results.

  • PDF

Effects on Regression Estimates under Misspecified Generalized Linear Mixed Models for Counts Data

  • Jeong, Kwang Mo
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.6
    • /
    • pp.1037-1047
    • /
    • 2012
  • The generalized linear mixed model(GLMM) is widely used in fitting categorical responses of clustered data. In the numerical approximation of likelihood function the normality is assumed for the random effects distribution; subsequently, the commercial statistical packages also routinely fit GLMM under this normality assumption. We may also encounter departures from the distributional assumption on the response variable. It would be interesting to investigate the impact on the estimates of parameters under misspecification of distributions; however, there has been limited researche on these topics. We study the sensitivity or robustness of the maximum likelihood estimators(MLEs) of GLMM for counts data when the true underlying distribution is normal, gamma, exponential, and a mixture of two normal distributions. We also consider the effects on the MLEs when we fit Poisson-normal GLMM whereas the outcomes are generated from the negative binomial distribution with overdispersion. Through a small scale Monte Carlo study we check the empirical coverage probabilities of parameters and biases of MLEs of GLMM.

Negative binomial loglinear mixed models with general random effects covariance matrix

  • Sung, Youkyung;Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.1
    • /
    • pp.61-70
    • /
    • 2018
  • Modeling of the random effects covariance matrix in generalized linear mixed models (GLMMs) is an issue in analysis of longitudinal categorical data because the covariance matrix can be high-dimensional and its estimate must satisfy positive-definiteness. To satisfy these constraints, we consider the autoregressive and moving average Cholesky decomposition (ARMACD) to model the covariance matrix. The ARMACD creates a more flexible decomposition of the covariance matrix that provides generalized autoregressive parameters, generalized moving average parameters, and innovation variances. In this paper, we analyze longitudinal count data with overdispersion using GLMMs. We propose negative binomial loglinear mixed models to analyze longitudinal count data and we also present modeling of the random effects covariance matrix using the ARMACD. Epilepsy data are analyzed using our proposed model.

Mixed Effects Kernel Binomial Regression

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1327-1334
    • /
    • 2008
  • Mixed effect binomial regression models are widely used for analysis of correlated count data in which the response is the result of a series of one of two possible disjoint outcomes. In this paper, we consider kernel extensions with nonparametric fixed effects and parametric random effects. The estimation is through the penalized likelihood method based on kernel trick, and our focus is on the efficient computation and the effective hyperparameter selection. For the selection of hyperparameters, cross-validation techniques are employed. Examples illustrating usage and features of the proposed method are provided.

  • PDF

Fitting Bivariate Generalized Binomial Models of the Sarmanov Type (Sarmanov형 이변량 일반화이항모형의 적합)

  • Lee, Joo-Yong;Kim, Kee-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.2
    • /
    • pp.271-280
    • /
    • 2009
  • For bivariate binomial data with both intra and inter-class correlation, Danaher and Hardie (2005) proposed a bivariate beta-binomial model. However, the model is limited to the situation where the intra-class correlation is strictly positive. Thus it might be seriously inadequate for data with a negative intra-class correlation. Several authors have considered generalized binomial distributions covering a wider range of intra-class correlation which could relax the possible model restrictions imposed. Among others there are the additive/multiplicative and the beta/extended beta binomial model. In this study, bivariate models of the Sarmanov (1966) type are formed by combining each of those univariate models to take care of the inter-class correlation, and are evaluated in terms of the goodness-of-fit. As a result, B-mB and B-ebB are fitted, successfully, to real data and that B-mB, which has a wider permissible range than B-ebB for the intra-class correlation is relatively preferred.

The Effects of Dispersion Parameters and Test for Equality of Dispersion Parameters in Zero-Truncated Bivariate Generalized Poisson Models (제로절단된 이변량 일반화 포아송 분포에서 산포모수의 효과 및 산포의 동일성에 대한 검정)

  • Lee, Dong-Hee;Jung, Byoung-Cheol
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.3
    • /
    • pp.585-594
    • /
    • 2010
  • This study, investigates the effects of dispersion parameters between two response variables in zero-truncated bivariate generalized Poisson distributions. A Monte Carlo study shows that the zero-truncated bivariate Poisson and negative binomial models fit poorly wherein the zero-truncated bivariate count data has heterogeneous dispersion parameters on dependent variables. In addition, we derive the score test for testing the equality of the dispersion parameters and compare its efficiency with the likelihood ratio test.

Tests for Equality of Dispersions in the Generalized Bivariate Negative Binomial Regression Model with Heterogeneous Dispersions (서로 다른 산포를 갖는 이변량 음이항 회귀모형에서 산포의 동일성에 대한 검정)

  • Han, Sang-Moon;Jung, Byoung-Cheol
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.2
    • /
    • pp.219-227
    • /
    • 2011
  • In this paper, we proposed a generalized bivariate negative binomial distribution allowing heterogeneous dispersions on two dependent variables based on a trivariate reduction technique. In this model, we propose the score and LR tests for testing the equality of dispersions and compare the efficiencies of the proposed tests using a Monte Carlo study. The Monte Carlo study shows that the proposed score and LR tests prove to be an efficient test for the equality of dispersions in the view of the significance level and power. However, the score test is easier to compute than the LR test and it shows a slightly better performance than the LR test from the Monte Carlo study, we suggest the use of score tests for testing the equality of dispersions on two dependent variables. In addition, an empirical example is provided to illustrate the results.