• 제목/요약/키워드: generalized least squares

검색결과 158건 처리시간 0.027초

비선형 평균 일반화 이분산 자기회귀모형의 추정 (Estimation of nonlinear GARCH-M model)

  • 심주용;이장택
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권5호
    • /
    • pp.831-839
    • /
    • 2010
  • 최소제곱 서포트벡터기계는 비선형회귀분석과 분류에 널리 쓰이는 커널기법이다. 본 논문에서는 금융시계열자료의 평균 및 변동성을 추정하기 위하여 평균의 추정 방법으로는 가중최소제곱 서포트벡터기계, 변동성의 추정 방법으로는 최소제곱 서포트벡터기계를 사용하는 비선형 평균 일반화 이분산 자기회귀모형을 제안한다. 제안된 모형은 선형 일반화 이분산 자기회귀모형 및 선형 평균 일반화 이분산 자기회귀모형보다 더 나은 추정 능력을 가진다는 것을 실제자료의 추정을 통하여 보였다.

An Algorithm for One-Sided Generalized Least Squares Estimation and Its Application

  • Park, Chul-Gyu
    • Journal of the Korean Statistical Society
    • /
    • 제29권3호
    • /
    • pp.361-373
    • /
    • 2000
  • A simple and efficient algorithm is introduced for generalized least squares estimation under nonnegativity constraints in the components of the parameter vector. This algorithm gives the exact solution to the estimation problem within a finite number of pivot operations. Besides an illustrative example, an empirical study is conducted for investigating the performance of the proposed algorithm. This study indicates that most of problems are solved in a few iterations, and the number of iterations required for optimal solution increases linearly to the size of the problem. Finally, we will discuss the applicability of the proposed algorithm extensively to the estimation problem having a more general set of linear inequality constraints.

  • PDF

Geographically weighted least squares-support vector machine

  • Hwang, Changha;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권1호
    • /
    • pp.227-235
    • /
    • 2017
  • When the spatial information of each location is given specifically as coordinates it is popular to use the geographically weighted regression to incorporate the spatial information by assuming that the regression parameters vary spatially across locations. In this paper, we relax the linearity assumption of geographically weighted regression and propose a geographically weighted least squares-support vector machine for estimating geographically weighted mean by using the basic concept of kernel machines. Generalized cross validation function is induced for the model selection. Numerical studies with real datasets have been conducted to compare the performance of proposed method with other methods for predicting geographically weighted mean.

Generalized Bayes estimation for a SAR model with linear restrictions binding the coefficients

  • Chaturvedi, Anoop;Mishra, Sandeep
    • Communications for Statistical Applications and Methods
    • /
    • 제28권4호
    • /
    • pp.315-327
    • /
    • 2021
  • The Spatial Autoregressive (SAR) models have drawn considerable attention in recent econometrics literature because of their capability to model the spatial spill overs in a feasible way. While considering the Bayesian analysis of these models, one may face the problem of lack of robustness with respect to underlying prior assumptions. The generalized Bayes estimators provide a viable alternative to incorporate prior belief and are more robust with respect to underlying prior assumptions. The present paper considers the SAR model with a set of linear restrictions binding the regression coefficients and derives restricted generalized Bayes estimator for the coefficients vector. The minimaxity of the restricted generalized Bayes estimator has been established. Using a simulation study, it has been demonstrated that the estimator dominates the restricted least squares as well as restricted Stein rule estimators.

Support vector expectile regression using IRWLS procedure

  • Choi, Kook-Lyeol;Shim, Jooyong;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권4호
    • /
    • pp.931-939
    • /
    • 2014
  • In this paper we propose the iteratively reweighted least squares procedure to solve the quadratic programming problem of support vector expectile regression with an asymmetrically weighted squares loss function. The proposed procedure enables us to select the appropriate hyperparameters easily by using the generalized cross validation function. Through numerical studies on the artificial and the real data sets we show the effectiveness of the proposed method on the estimation performances.

A Recursive Data Least Square Algorithm and Its Channel Equalization Application

  • Lim, Jun-Seok;Kim, Jae-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • 제25권2E호
    • /
    • pp.43-48
    • /
    • 2006
  • Abstract-Using the recursive generalized eigendecomposition method, we develop a recursive form solution to the data least squares (DLS) problem, in which the error is assumed to lie in the data matrix only. Simulations demonstrate that DLS outperforms ordinary least square for certain types of deconvolution problems.

2변수 시계열 모델 산출을 위한 소형컴퓨터용 알고리즘 (Algorithms for bivariate time series modeling in small size computers)

  • 김광준;문인혁;박병호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.108-112
    • /
    • 1986
  • Several algorithms for bivariate time series modeling are reviewed : linear least square, nonlinear least squares, generalized least square, and multi-stage least square methods. Estimation results of simulated data by the above methods are discussed.

  • PDF

ON DIFFERENTIABILITY OF THE MATRIX TRACE OPERATOR AND ITS APPLICATIONS

  • Dulov, E.V.;Andrianova, N.A.
    • Journal of applied mathematics & informatics
    • /
    • 제8권1호
    • /
    • pp.97-109
    • /
    • 2001
  • This article is devoted to “forgotten” and rarely used technique of matrix analysis, introduced in 60-70th and enhanced by authors. We will study the matrix trace operator and it’s differentiability. This idea generalizes the notion of scalar derivative for matrix computations. The list of the most common derivatives is given at the end of the article. Additionally we point out a close connection of this technique with a least square problem in it’s classical and generalized case.

반복측정의 다가 반응자료에 대한 일반화된 주변 로짓모형 (A Generalized Marginal Logit Model for Repeated Polytomous Response Data)

  • 최재성
    • 응용통계연구
    • /
    • 제21권4호
    • /
    • pp.621-630
    • /
    • 2008
  • 본 논문은 개체의 특성으로 다가의 명목형 반응변수가 반복측정 요인인 시간요인에 의해 주기적으로 반복측정 되었을 때, 자료를 분석하기 위한 모형으로 일반화된 주변 로짓모형을 논의하고 있다. 다가의 반응변수에 영향을 미치는 공변량중 일부가 처치로써 상대적으로 큰 크기의 실험단위에 배정되고 반복측정 요인인 시간요인의 수준들이 또한 처치요인으로 비확률화에 의해 상대적으로 작은 크기의 실험단위에 배정될 때 이를 고려한 모형구축과정과 예상되는 공분산 구조의 가정하에서 모수를 추정하기 위한 방법으로 가중최소제곱 방법을 이용할 수 있음을 제시하고 있다.

${H_2}^{15}O$ PET을 이용한 뇌혈류 파라메트릭 영상 구성을 위한 알고리즘 비교 (Comparison of Algorithms for Generating Parametric Image of Cerebral Blood Flow Using ${H_2}^{15}O$ PET Positron Emission Tomography)

  • 이재성;이동수;박광석;정준기;이명철
    • 대한핵의학회지
    • /
    • 제37권5호
    • /
    • pp.288-300
    • /
    • 2003
  • 목적: ${H_2}^{15}O$ PET의 정량화를 위하여 1-조직 구획모델이 쓰이며, 뇌혈류와 조직/혈액 분배계수를 구하기 위하여 nonlinear least squares (NLS) 방법이 사용되나 계산 시간이 긴 등의 문제로 파라미터를 각화소마다 구해야 하는 파라메트릭 영상 구성에는 적합하지 않다. 이 연구에서는 이와 같은 NLS 문제점을 극복하여 파라메트릭 영상을 빠르게 구성하기 위하여 제안된 파라미터 추정 알고리즘들을 구현하고, 이 방법들의 통계적 신뢰도와 계산의 효율성을 비교하였다. 대상 및 방법: 이 연구에서 이용한 방법들은 linear least squares (LLS), linear weighted least squares (LWLS), linear generalized least squares (GLS), linear generalized weighted least squares (GWLS), weighted integration (WI), 그리고 model-based clustering method (CAKS)이다. 노이즈 정도에 따른 각 파라메트릭 영상법의 정확성 및 통계적 신뢰성을 알아보기 위하여 Zubal 뇌모형(brain phantom)으로부터 동적 PET 영상을 모사하고 포아송노이즈를 더한 후 각 파라메트릭 영상 구성 방법을 적용하였다. 또한 정상인 16명에 대하여 얻은 실제 자료에 대하여 이 방법들을 적용하고 결과를 비교하였다. 결과: 뇌혈류와 분배계수에 대한 평균 오차는 방법에 따라 크게 다르지 않았으며 모든 방법이 뇌혈류 및 분배계수 추정에 있어 무시할 만한 바이어스를 보였다. 파라메트릭 영상의 정성적 특성 또한 유사하였으나 CAKS 방법의 계산 속도가 월등하여 NLS 방법의 약 1/500, LLS 방법의 약 1/25의 계산시간을 보였다. 결론: 뇌혈류 파라메트릭 영상 구성을 위한 빠른 파라미터 추정 알고리즘들 중에 보다 개선되어 제안된 LWS, GLS, GLWS, CAKS 방법들이 단순하고 빠른 LLS, WI 방법들에 비하여 통계적 신뢰성을 크게 향상시키지는 못하나 CAKS 방법은 계산 시간을 유의하게 단축시키므로 가장 적합한 파라메트릭 영상 구성방법이라 할 수 있을 것이다.