• Title/Summary/Keyword: generalized equations

Search Result 746, Processing Time 0.025 seconds

SOME FIXED POINT THEOREMS IN GENERALIZED DARBO FIXED POINT THEOREM AND THE EXISTENCE OF SOLUTIONS FOR SYSTEM OF INTEGRAL EQUATIONS

  • Arab, Reza
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.125-139
    • /
    • 2015
  • In this paper we introduce the notion of the generalized Darbo fixed point theorem and prove some fixed and coupled fixed point theorems in Banach space via the measure of non-compactness, which generalize the result of Aghajani et al. [6]. Our results generalize, extend, and unify several well-known comparable results in the literature. One of the applications of our main result is to prove the existence of solutions for the system of integral equations.

Stability Criterion for Volterra Type Delay Difference Equations Including a Generalized Difference Operator

  • Gevgesoglu, Murat;Bolat, Yasar
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.163-175
    • /
    • 2020
  • The stability of a class of Volterra-type difference equations that include a generalized difference operator ∆a is investigated using Krasnoselskii's fixed point theorem and some results are obtained. In addition, some examples are given to illustrate our theoretical results.

Dynamic analysis of deployable structures using independent displacement modes based on Moore-Penrose generalized inverse matrix

  • Xiang, Ping;Wu, Minger;Zhou, Rui Q.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1153-1174
    • /
    • 2015
  • Deployable structures have gained more and more applications in space and civil structures, while it takes a large amount of computational resources to analyze this kind of multibody systems using common analysis methods. This paper presents a new approach for dynamic analysis of multibody systems consisting of both rigid bars and arbitrarily shaped rigid bodies. The bars and rigid bodies are connected through their nodes by ideal pin joints, which are usually fundamental components of deployable structures. Utilizing the Moore-Penrose generalized inverse matrix, equations of motion and constraint equations of the bars and rigid bodies are formulated with nodal Cartesian coordinates as unknowns. Based on the constraint equations, the nodal displacements are expressed as linear combination of the independent modes of the rigid body displacements, i.e., the null space orthogonal basis of the constraint matrix. The proposed method has less unknowns and a simple formulation compared with common multibody dynamic methods. An analysis program for the proposed method is developed, and its validity and efficiency are investigated by analyses of several representative numerical examples, where good accuracy and efficiency are demonstrated through comparison with commercial software package ADAMS.

THREE-POINT BOUNDARY VALUE PROBLEMS FOR HIGHER ORDER NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Khan, Rahmat Ali
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.221-228
    • /
    • 2013
  • The method of upper and lower solutions and the generalized quasilinearization technique is developed for the existence and approximation of solutions to boundary value problems for higher order fractional differential equations of the type $^c\mathcal{D}^qu(t)+f(t,u(t))=0$, $t{\in}(0,1),q{\in}(n-1,n],n{\geq}2$ $u^{\prime}(0)=0,u^{\prime\prime}(0)=0,{\ldots},u^{n-1}(0)=0,u(1)={\xi}u({\eta})$, where ${\xi},{\eta}{\in}(0,1)$, the nonlinear function f is assumed to be continuous and $^c\mathcal{D}^q$ is the fractional derivative in the sense of Caputo. Existence of solution is established via the upper and lower solutions method and approximation of solutions uses the generalized quasilinearization technique.

GENERALIZED HYERS-ULAM STABILITY OF FUNCTIONAL EQUATIONS

  • Kwon, Young Hak;Lee, Ho Min;Sim, Jeong Soo;Yang, Jeha;Park, Choonkil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.387-399
    • /
    • 2007
  • In this paper, we prove the generalized Hyers-Ulam stability of the following linear functional equations f(x + iy) + f(x - iy) + f(y + ix) + f(y - ix) = 2f(x) + 2f(y) and f((1 + i)x) = (1 + i)f(x), and of the following quadratic functional equations f(x + iy) + f(x - iy) + f(y + ix) + f(y - ix) = 0 and f((1 + i)x) = 2if(x) in complex Banach spaces.

  • PDF

A step-by-step guide to Generalized Estimating Equations using SPSS in dental research (치의학 분야에서 SPSS를 이용한 일반화 추정방정식의 단계별 안내)

  • Lim, Hoi-Jeong;Park, Su-Hyeon
    • The Journal of the Korean dental association
    • /
    • v.54 no.11
    • /
    • pp.850-864
    • /
    • 2016
  • The Generalized Estimating Equations (GEE) approach is a widely used statistical method for analyzing longitudinal data and clustered data in clinical studies. In dentistry, due to multiple outcomes obtained from one patient, the outcomes produced from an individual patient are correlated with one another. This study focused on the basic ideas of GEE and introduced the types of covariance matrix and working correlation matrix. The quasi-likelihood information criterion (QIC) and quasi-likelihood information criterion approximation ($QIC_u$) were used to select the best working correlation matrix and the best fitting model for the correlated outcomes. The purpose of this study is to show a detailed process for the GEE analysis using SPSS software along with an orthodontic miniscrew example, and to help understand how to use GEE analysis in dental research.

  • PDF

Calculation of the incompressible Navier-stokes equations in generalized nonorthogonal body fitted coordinate system (일반 비직교 표면좌표계에서의 비압축성 Navier-Stokes방정식의 수치해석)

  • Gang, Dong-Jin;Bae, Sang-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.1015-1027
    • /
    • 1996
  • In this paper, a numerical procedure for the calculation of the incompressible Navier-Stokes equations in a generalized nonorthogonal body fitted coordinate system is proposed and is validated through three test problems. Present numerical procedure derives the pressure equation by using the pressure substitution method on the regular grid system, and discretized momentum equations are based on the covariant velocity components. Cavity flow, backward facing step flow, and two dimensional channel flow with a sinusoidal wavy wall are chosen as three test problems. Numerical solutions obtained by present procedure shows a good agreement with previous numerical and/or experimental results. Convergence rate is also satisfactory.

Static analysis of shear-deformable shells of revolution via G.D.Q. method

  • Artioli, Edoardo;Viola, Erasmo
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.459-475
    • /
    • 2005
  • This paper deals with a novel application of the Generalized Differential Quadrature (G.D.Q.) method to the linear elastic static analysis of isotropic rotational shells. The governing equations of equilibrium, in terms of stress resultants and couples, are those from Reissner-Mindlin shear deformation shell theory. These equations, written in terms of internal-resultants circular harmonic amplitudes, are first put into generalized displacements form, by use of the strain-displacements relationships and the constitutive equations. The resulting systems are solved by means of the G.D.Q. technique with favourable precision, leading to accurate stress patterns.

EXTENDED GENERALIZED BATEMAN'S MATRIX POLYNOMIALS

  • Makky, Mosaed M.
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.239-246
    • /
    • 2021
  • In this article, a study of generalized Bateman's matrix polynomials is presented. We obtained partial differential equations by using differential operators in the generalized Bateman's matrix polynomials for two variables. Then we introduced some different recurrence relationships of the generalized Bateman's matrix polynomials. Finally present the relationship between the generalized Bateman's matrix polynomials of one and two variables.

Steady-State Equilibrium Analysis of a Multibody System Driven by Constant Generalized Speeds

  • Park, Dong-Hwan;Park, Jung-Hun;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1239-1245
    • /
    • 2002
  • A formulation which seeks steady-state equilibrium positions of constrained multibody systems driven by constant generalized speeds is presented in this paper. Since the relative coordinates are employed, constraint equations at cut joints are incorporated into the formulation. To obtain the steady-state equilibrium position of a multibody system, nonlinear equations are derived and solved iteratively. The nonlinear equations consist of the force equilibrium equations and the kinematic constraint equations. To verify the effectiveness of the proposed formulation, two numerical examples are solved and the results are compared with those of a commercial program.