• Title/Summary/Keyword: generalized asymptotically nonexpansive mappings

Search Result 9, Processing Time 0.021 seconds

Some Results on Generalized Asymptotically Nonexpansive Mappings in p-Hadamard Spaces

  • Kaewta Juanak;Aree Varatechakongka;Withun Phuengrattana
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.3
    • /
    • pp.451-461
    • /
    • 2023
  • In this paper, we study the fixed point property for generalized asymptotically nonexpansive mappings in the setting of p-Hadamard spaces, with p ≥ 2. We prove the strong convergence of the sequence generated by the modified two-step iterative sequence for finding a fixed point of a generalized asymptotically nonexpansive mapping in p-Hadamard spaces.

A HYBRID METHOD FOR A COUNTABLE FAMILY OF LIPSCHITZ GENERALIZED ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS AND AN EQUILIBRIUM PROBLEM

  • Cholamjiak, Prasit;Cholamjiak, Watcharaporn;Suantai, Suthep
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.335-351
    • /
    • 2013
  • In this paper, we introduce a new iterative scheme for finding a common element of the fixed points set of a countable family of uniformly Lipschitzian generalized asymptotically quasi-nonexpansive mappings and the solutions set of equilibrium problems. Some strong convergence theorems of the proposed iterative scheme are established by using the concept of W-mappings of a countable family of uniformly Lipschitzian generalized asymptotically quasi-nonexpansive mappings.

CONVERGENCE TO COMMON FIXED POINTS FOR A FINITE FAMILY OF GENERALIZED ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Saluja, G.S.
    • East Asian mathematical journal
    • /
    • v.29 no.1
    • /
    • pp.23-37
    • /
    • 2013
  • The purpose of this paper is to study an implicit iteration process with errors and establish weak and strong convergence theorems to converge to common fixed points for a finite family of generalized asymptotically quasi-nonexpansive mappings in the framework of uniformly convex Banach spaces. Our results extend, improve and generalize some known results from the existing literature.

STRONG CONVERGENCE OF MODIFIED HYBRID ALGORITHM FOR QUASI-φ-ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

  • Zhang, Huancheng;Su, Yongfu
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.539-551
    • /
    • 2009
  • In this paper, we propose a modified hybrid algorithm and prove strong convergence theorems for a family of quasi-$\phi$-asymptotically nonexpansive mappings. Our results extend and improve the results by Nakajo, Takahashi, Kim, Xu, Su and some others.

COMMON FIXED POINTS FOR SINGLE-VALUED AND MULTI-VALUED MAPPINGS IN COMPLETE ℝ-TREES

  • Phuengrattana, Withun;Sopha, Sirichai
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.507-518
    • /
    • 2016
  • The aim of this paper is to prove some strong convergence theorems for the modified Ishikawa iteration process involving a pair of a generalized asymptotically nonexpansive single-valued mapping and a quasi-nonexpansive multi-valued mapping in the framework of $\mathbb{R}$-trees under the gate condition.

APPROXIMATION OF COMMON FIXED POINTS OF NON-SELF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

  • Kim, Jong-Kyu;Dashputre, Samir;Diwan, S.D.
    • East Asian mathematical journal
    • /
    • v.25 no.2
    • /
    • pp.179-196
    • /
    • 2009
  • Let E be a uniformly convex Banach space and K a nonempty closed convex subset which is also a nonexpansive retract of E. For i = 1, 2, 3, let $T_i:K{\rightarrow}E$ be an asymptotically nonexpansive mappings with sequence ${\{k_n^{(i)}\}\subset[1,{\infty})$ such that $\sum_{n-1}^{\infty}(k_n^{(i)}-1)$ < ${\infty},\;k_{n}^{(i)}{\rightarrow}1$, as $n{\rightarrow}\infty$ and F(T)=$\bigcap_{i=3}^3F(T_i){\neq}{\phi}$ (the set of all common xed points of $T_i$, i = 1, 2, 3). Let {$a_n$},{$b_n$} and {$c_n$} are three real sequences in [0, 1] such that $\in{\leq}\;a_n,\;b_n,\;c_n\;{\leq}\;1-\in$ for $n{\in}N$ and some ${\in}{\geq}0$. Starting with arbitrary $x_1{\in}K$, define sequence {$x_n$} by setting {$$x_{n+1}=P((1-a_n)x_n+a_nT_1(PT_1)^{n-1}y_n)$$ $$y_n=P((1-b_n)x_n+a_nT_2(PT_2)^{n-1}z_n)$$ $$z_n=P((1-c_n)x_n+c_nT_3(PT_3)^{n-1}x_n)$$. Assume that one of the following conditions holds: (1) E satises the Opial property, (2) E has Frechet dierentiable norm, (3) $E^*$ has Kedec -Klee property, where $E^*$ is dual of E. Then sequence {$x_n$} converges weakly to some p${\in}$F(T).

COMMON FIXED POINT AND INVARIANT APPROXIMATION RESULTS

  • Abbas, Mujahid;Kim, Jong-Kyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.537-545
    • /
    • 2007
  • Necessary conditions for the existence of common fixed points for noncommuting mappings satisfying generalized contractive conditions in the setup of certain metrizable topological vector spaces are obtained. As applications, related results on best approximation are derived. Our results extend, generalize and unify various known results in the literature.

COMMON FIXED POINT AND INVARIANT APPROXIMATION IN MENGER CONVEX METRIC SPACES

  • Hussain, Nawab;Abbas, Mujahid;Kim, Jong-Kyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.671-680
    • /
    • 2008
  • Necessary conditions for the existence of common fixed points for noncommuting mappings satisfying generalized contractive conditions in a Menger convex metric space are obtained. As an application, related results on best approximation are derived. Our results generalize various well known results.