• Title/Summary/Keyword: generalized Kato class measure

Search Result 2, Processing Time 0.014 seconds

STABILITY THEOREM FOR THE FEYNMAN INTEGRAL VIA ADDITIVE FUNCTIONALS

  • Lim, Jung-Ah
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.3
    • /
    • pp.525-538
    • /
    • 1998
  • Recently, a stability theorem for the Feynman integral as a bounded linear operator on$ L_2$($R^{d}$ /) with respect to measures whose positive and negative variations are in the generalized Kato class was proved. We study a stability theorem for the Feynman integral with respect to measures whose positive variations are in the class of $\sigma$-finite smooth measures and negative variations are in the generalized Kato class. This extends the recent result in the sense that the class of $\sigma$-finite smooth measures properly contains the generalized Kato class.

  • PDF

NEW RESULTS ON STABILITY PROPERTIES FOR THE FEYNMAN INTEGRAL VIA ADDITIVE FUNCTIONALS

  • Lim, Jung-Ah
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.4
    • /
    • pp.559-577
    • /
    • 2002
  • It is known that the analytic operator-valued Feynman integral exists for some "potentials" which we so singular that they must be given by measures rather than by functions. Corresponding stability results involving monotonicity assumptions have been established by the author and others. Here in our main theorem we prove further stability theorem without monotonicity requirements.