• Title/Summary/Keyword: generalized Fibonacci numbers

Search Result 12, Processing Time 0.018 seconds

Some Properties of Fibonacci Numbers, Generalized Fibonacci Numbers and Generalized Fibonacci Polynomial Sequences

  • Laugier, Alexandre;Saikia, Manjil P.
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.1
    • /
    • pp.1-84
    • /
    • 2017
  • In this paper we study the Fibonacci numbers and derive some interesting properties and recurrence relations. We prove some charecterizations for $F_p$, where p is a prime of a certain type. We also define period of a Fibonacci sequence modulo an integer, m and derive certain interesting properties related to them. Afterwards, we derive some new properties of a class of generalized Fibonacci numbers. In the last part of the paper we introduce some generalized Fibonacci polynomial sequences and we derive some results related to them.

SUM FORMULAE OF GENERALIZED FIBONACCI AND LUCAS NUMBERS

  • Cerin, Zvonko;Bitim, Bahar Demirturk;Keskin, Refik
    • Honam Mathematical Journal
    • /
    • v.40 no.1
    • /
    • pp.199-210
    • /
    • 2018
  • In this paper we obtain some formulae for several sums of generalized Fibonacci numbers $U_n$ and generalized Lucas numbers $V_n$ and their dual forms $G_n$ and $H_n$ by using extensions of an interesting identity by A. R. Amini for Fibonacci numbers to these four kinds of generalizations and their first and second derivatives.

NOTES ON GENERALIZED FIBONACCI NUMBERS AND MATRICES

  • Halim, Ozdemir;Sinan, Karakaya;Tugba, Petik
    • Honam Mathematical Journal
    • /
    • v.44 no.4
    • /
    • pp.473-484
    • /
    • 2022
  • In this study, some new relations between generalized Fibonacci numbers and matrices are given. The work is designed in three stages: Firstly, it is obtained a relation between generalized Fibonacci numbers and integer powers of the matrices X satisfying the relation X2 = pX +qI, and also, many results are derived from obtained relation. Then, it is established more general relation between generalized Fibonacci numbers and the square matrices X satisfying the condition X2 = VnX - (-q)nI. Finally, some applications and numerical examples related to the obtained results are given.

SINGULAR CASE OF GENERALIZED FIBONACCI AND LUCAS MATRICES

  • Miladinovic, Marko;Stanimirovic, Predrag
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.33-48
    • /
    • 2011
  • The notion of the generalized Fibonacci matrix $\mathcal{F}_n^{(a,b,s)}$ of type s, whose nonzero elements are generalized Fibonacci numbers, is introduced in the paper [23]. Regular case s = 0 is investigated in [23]. In the present article we consider singular case s = -1. Pseudoinverse of the generalized Fibonacci matrix $\mathcal{F}_n^{(a,b,-1)}$ is derived. Correlations between the matrix $\mathcal{F}_n^{(a,b,-1)}$ and the Pascal matrices are considered. Some combinatorial identities involving generalized Fibonacci numbers are derived. A class of test matrices for computing the Moore-Penrose inverse is presented in the last section.

A Study on Teaching Material for Enhancing Mathematical Reasoning and Connections - Figurate numbers, Pascal's triangle, Fibonacci sequence - (수학적 추론과 연결성의 교수.학습을 위한 소재 연구 -도형수, 파스칼 삼각형, 피보나치 수열을 중심으로-)

  • Son, Hong-Chan
    • School Mathematics
    • /
    • v.12 no.4
    • /
    • pp.619-638
    • /
    • 2010
  • In this paper, we listed and reviewed some properties on polygonal numbers, pyramidal numbers and Pascal's triangle, and Fibonacci sequence. We discussed that the properties of gnomonic numbers, polygonal numbers and pyramidal numbers are explained integratively by introducing the generalized k-dimensional pyramidal numbers. And we also discussed that the properties of those numbers and relationships among generalized k-dimensional pyramidal numbers, Pascal's triangle and Fibonacci sequence are suitable for teaching and learning of mathematical reasoning and connections.

  • PDF

ON THE INTERSECTION OF k-FIBONACCI AND PELL NUMBERS

  • Bravo, Jhon J.;Gomez, Carlos A.;Herrera, Jose L.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.535-547
    • /
    • 2019
  • In this paper, by using the lower bound of linear forms in logarithms of Matveev and the theory of continued fractions by means of a variation of a result of Dujella and $Peth{\ddot{o}}$, we find all generalized Fibonacci numbers which are Pell numbers. This paper continues a previous work that searched for Pell numbers in the Fibonacci sequence.

On Sums of Products of Horadam Numbers

  • Cerin, Zvonko
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.3
    • /
    • pp.483-492
    • /
    • 2009
  • In this paper we give formulae for sums of products of two Horadam type generalized Fibonacci numbers with the same recurrence equation and with possibly different initial conditions. Analogous improved alternating sums are also studied as well as various derived sums when terms are multiplied either by binomial coefficients or by members of the sequence of natural numbers. These formulae are related to the recent work of Belbachir and Bencherif, $\v{C}$erin and $\v{C}$erin and Gianella.

GENERALIZED LUCAS NUMBERS OF THE FORM 5kx2 AND 7kx2

  • KARAATLI, OLCAY;KESKIN, REFIK
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1467-1480
    • /
    • 2015
  • Generalized Fibonacci and Lucas sequences ($U_n$) and ($V_n$) are defined by the recurrence relations $U_{n+1}=PU_n+QU_{n-1}$ and $V_{n+1}=PV_n+QV_{n-1}$, $n{\geq}1$, with initial conditions $U_0=0$, $U_1=1$ and $V_0=2$, $V_1=P$. This paper deals with Fibonacci and Lucas numbers of the form $U_n$(P, Q) and $V_n$(P, Q) with the special consideration that $P{\geq}3$ is odd and Q = -1. Under these consideration, we solve the equations $V_n=5kx^2$, $V_n=7kx^2$, $V_n=5kx^2{\pm}1$, and $V_n=7kx^2{\pm}1$ when $k{\mid}P$ with k > 1. Moreover, we solve the equations $V_n=5x^2{\pm}1$ and $V_n=7x^2{\pm}1$.

GENERALIZED FIBONACCI AND LUCAS NUMBERS OF THE FORM wx2 AND wx2 ∓ 1

  • Keskin, Refik
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1041-1054
    • /
    • 2014
  • Let $P{\geq}3$ be an integer and let ($U_n$) and ($V_n$) denote generalized Fibonacci and Lucas sequences defined by $U_0=0$, $U_1=1$; $V_0= 2$, $V_1=P$, and $U_{n+1}=PU_n-U_{n-1}$, $V_{n+1}=PV_n-V_{n-1}$ for $n{\geq}1$. In this study, when P is odd, we solve the equations $V_n=kx^2$ and $V_n=2kx^2$ with k | P and k > 1. Then, when k | P and k > 1, we solve some other equations such as $U_n=kx^2$, $U_n=2kx^2$, $U_n=3kx^2$, $V_n=kx^2{\mp}1$, $V_n=2kx^2{\mp}1$, and $U_n=kx^2{\mp}1$. Moreover, when P is odd, we solve the equations $V_n=wx^2+1$ and $V_n=wx^2-1$ for w = 2, 3, 6. After that, we solve some Diophantine equations.