• Title/Summary/Keyword: general mathematics

Search Result 1,664, Processing Time 0.031 seconds

Spatial Ability, Its Relationship to Mathematics Achievement, and Strategic Choices for Spatial Tasks Among Engineering Freshmen, and Gender Differences (공과대학 신입생들의 공간 시각화 능력의 수학 성취도와의 관계와 문제해결 전략 및 성별 차이에 관한 연구)

  • Kim, Yon Mi
    • Korean Journal of Cognitive Science
    • /
    • v.28 no.3
    • /
    • pp.149-171
    • /
    • 2017
  • In this research, based on the fact that spatial ability is important for the achievement in the STEM fields, and technological innovation, Purdue Spatial Visualization Test-Rotation has been used to investigate engineering freshmen's spatial ability and gender differences. Students who have taken advanced mathematics courses in high school(those who have taken type B math test in Korean SAT test) and students with general math courses(those who have taken type A in Korean SAT-Math test) are included in this study to find out the relationship between mathematics achievement and spatial ability. Finding out the strategies taken by students was another aim of this study. This strategic differences between high achievers and lower achievers, male and female students were analyzed from students' self report. Spatial ability test score was highest in the SAT-Math type B male students, decreased in the order of type A male students, type B female students, and lastly type A female students. There was no substantial difference between second and third groups. In each group, male students' average score was 8~10% higher than female students, which affirms 2015's results. The correlation between spatial ability and mathematics achievement was negligible in each group, but male students' math score and spatial ability score were higher than that of female students. This can be interpreted that there is some correlation between these two. Strategic choices can vary in the continuous spectrum with analytic method and holistic method at both ends. From students' self report, using Mann-Witney test, it turned out that there exists strategic differences between male and female students. Male students have a tendency to use holistic strategy more often than female students. I also found that the strategy choice did not vary greatly among all score groups. For the perfect score groups, both female and male students used holistic strategy most frequently. For low achieving groups, there is an evidence that these students overuse one method compared to average or high achieving groups, which turned out to be less effective. Based on these, I suggest that low achieving students need to have more chances to adopt efficient strategies and to practice challenging problems to improve their spatial abilities.

Why Gabor Frames? Two Fundamental Measures of Coherence and Their Role in Model Selection

  • Bajwa, Waheed U.;Calderbank, Robert;Jafarpour, Sina
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.289-307
    • /
    • 2010
  • The problem of model selection arises in a number of contexts, such as subset selection in linear regression, estimation of structures in graphical models, and signal denoising. This paper studies non-asymptotic model selection for the general case of arbitrary (random or deterministic) design matrices and arbitrary nonzero entries of the signal. In this regard, it generalizes the notion of incoherence in the existing literature on model selection and introduces two fundamental measures of coherence-termed as the worst-case coherence and the average coherence-among the columns of a design matrix. It utilizes these two measures of coherence to provide an in-depth analysis of a simple, model-order agnostic one-step thresholding (OST) algorithm for model selection and proves that OST is feasible for exact as well as partial model selection as long as the design matrix obeys an easily verifiable property, which is termed as the coherence property. One of the key insights offered by the ensuing analysis in this regard is that OST can successfully carry out model selection even when methods based on convex optimization such as the lasso fail due to the rank deficiency of the submatrices of the design matrix. In addition, the paper establishes that if the design matrix has reasonably small worst-case and average coherence then OST performs near-optimally when either (i) the energy of any nonzero entry of the signal is close to the average signal energy per nonzero entry or (ii) the signal-to-noise ratio in the measurement system is not too high. Finally, two other key contributions of the paper are that (i) it provides bounds on the average coherence of Gaussian matrices and Gabor frames, and (ii) it extends the results on model selection using OST to low-complexity, model-order agnostic recovery of sparse signals with arbitrary nonzero entries. In particular, this part of the analysis in the paper implies that an Alltop Gabor frame together with OST can successfully carry out model selection and recovery of sparse signals irrespective of the phases of the nonzero entries even if the number of nonzero entries scales almost linearly with the number of rows of the Alltop Gabor frame.

Basic Research on Lighting Design for Learning Effect (학습효과 증진을 위한 조명설계에 대한 기초연구)

  • Lee, Boong-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.518-524
    • /
    • 2020
  • This study conducted basic research on an LED lighting design to improve the learning effect from brain wave analysis. The ideal environments of mathematics, language, and creative region can be different. Inside the space where the lighting environment can be experienced directly, the test subject consisted of common elements. Other lighting was blocked completely in controlled lighting conditions. The brain waves were analyzed according to the change in color temperature and illumination. The analyzer used was fabricated by EMOTIV Company. In the variable RGB LED light, the color of the light was measured, and the brain wave of each subject was determined. LED lights have variable color temperature (3000 [K], 4500 [K]. 250 [lux], 70% -350 [lux], 100% -500 [lux]). As research results, the highest concentration in a mathematics study was in the general condition of a high color temperature, in which the optimal condition was a 6000[K] color temperature and 350[lux] illumination. The optimal condition for a language study was a 4500[K] color temperature and 500[lux] illumination, and that of the creative study was 3000[K] color temperature and 500[lux] illumination. Overall, the possibility of emotional ability and concentrated learning efficiency can be improved by the LED lighting design with the color temperature and illumination.

Understanding of the Statistical Variation Concept of Elementary School 5th Graders and Study on its Lesson Plans (초등학교 5학년 학생의 통계적 변이성 개념의 이해와 그 지도에 관한 연구)

  • Kim, Young-Mi;Park, Young-Hee
    • Journal of Educational Research in Mathematics
    • /
    • v.16 no.3
    • /
    • pp.221-249
    • /
    • 2006
  • The object of this study is to understand the characteristics of mathematical knowledge that elementary 5th graders have regarding the statistical variation concept and the changes after taking lessons. This study includes a pretest to examine the characteristics of mathematical knowledge that elementary 5th graders have regarding the statistical variation concept. And It was followed by a lesson on statistical variation concept to be able to correct error which was revealed by the inspection, and to improve good points. It turned out that after five lessons on the statistical variation concept, the insufficient aspects were properly improved, and as for the points they already understand, they came to understand better than before. They came to consider the statical variation concept instead of the frequency, preponderance, average, stable traits for the optimum value. Also, through the lesson on drawing tables and graphs, they came to better understand them, analyzing correctly the exercises in which tables and graphs were combined. When comparing data sets whose general distributions and extents were similar, students came up with the right answers in a stable way by considering averages combining statistical variation too. Since they tended to interpret a situation with their own subjective views adding conditions, teachers need to examine the proper situation and conditions prior to the lessons on the statistical variation concept.

  • PDF

Mathematical Reasoning Ability and Error Comparison through the Descriptive Evaluation of Mathematically Gifted Elementary Students and Non-Gifted Students (초등수학영재와 일반학생의 서술형 평가를 통한 수학적 추론 능력 및 오류 비교)

  • Kim, Dong Gwan;Ryu, Sung Rim
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.18 no.1
    • /
    • pp.123-148
    • /
    • 2014
  • The purpose of this study is to figure out the perceptional characteristics of mathematically gifted elementary students by comparing the mathematical reasoning ability and errors between mathematically gifted elementary students and non-gifted students. This research has been targeted at 63 gifted students from 5 elementary schools and 63 non-gifted students from 4 elementary schools. The result of this research is as follows. First, mathematically gifted elementary students have higher inductive reasoning ability compared to non-gifted students. Mathematically gifted elementary students collected proper, accurate, systematic data. Second, mathematically gifted elementary students have higher inductive analogical ability compared to non-gifted students. Mathematically gifted elementary students figure out structural similarity and background better than non-gifted students. Third, mathematically gifted elementary students have higher deductive reasoning ability compared to non-gifted students. Zero error ratio was significantly low for both mathematically gifted elementary students and non-gifted students in deductive reasoning, however, mathematically gifted elementary students presented more general and appropriate data compared to non-gifted students and less reasoning step was achieved. Also, thinking process was well delivered compared to non-gifted students. Fourth, mathematically gifted elementary students committed fewer errors in comparison with non-gifted students. Both mathematically gifted elementary students and non-gifted students made the most mistakes in solving process, however, the number of the errors was less in mathematically gifted elementary students.

  • PDF

An Analysis on the Math Camp Programs for Elementary Gifted Students -In Case of the Education Centers for the Gifted in Seoul Metropolitan Office of Education- (초등 영재교육원 수학 영재캠프 프로그램 분석 -서울특별시교육청 산하 영재교육원 사례를 중심으로-)

  • Lim, Kyeong-Jin;Park, Man-Goo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.1
    • /
    • pp.81-102
    • /
    • 2010
  • The purpose of this study was to analyze the content and design of the seven math camp programs for students of the education centers for the elementary gifted students. The analysis focused on the goals, content, and evaluations utilized in the math camp programs. The results of the study were as follows. First, there was no big difference between the goals set for each camp, and they mainly focused on the goals in affective domain. Second, the content of math camp programs was focused on enrichment rather than acceleration. Most of the programs were focused on geometry, whereas fewer programs were focused on measurement, probability and statistics. Based on the Analysis, we found that only nine out of 27 programs applied level-wised or individual exercise programs. Third, all centers for the mathematically gifted carried out evaluations of their math camp programs. However, a specific evaluation plan was not established for the math camp program plans. We suggested the direction of math camp programs as follows. First, the goals should reflect on the intended outcomes of the math camp programs. Also, the goals of math camp programs need to be distinctive from general education goals. Second, the programs should contain harmonious contents with enrichment and acceleration and must include various reactions and task commitment. The math camp programs need to include references and an appropriate information for the gifted students to encourage self-directed learning. Third, a more specific evaluation plan for math camp programs needs to be developed for effective education for the gifted students.

  • PDF

Case Analysis of Problem Solving Process Based on Brain Preference of Mathematically Gifted Students -Focused on the factors of Schoenfeld's problem solving behavior- (수학영재들의 뇌선호유형에 따른 문제해결 과정 사례 분석 -Schoenfeld의 문제해결 행동요인을 중심으로-)

  • Kim, Jae Hee;Song, Sang Hun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.17 no.1
    • /
    • pp.67-86
    • /
    • 2013
  • The purpose of this study is to analyze selection of factors of Schoenfeld's problem solving behavior shown in problem solving process of mathematically gifted students based on brain preference of the students and to present suggestions related to hemispheric lateralization that should be considered in teaching such students. The conclusions based on the research questions are as follows. First, as for problem solving methods of the students in the Gifted Education Center based on brain preference, the students of left brain preference showed more characteristics of the left brain such as preferring general, logical decision, while the students of right brain preference showed more characteristics of the right brain such as preferring subjective, intuitive decision, indicating that there were differences based on brain preference. Second, in the factors of Schoenfeld's problem solving behavior, the students of left brain preference mainly showed factors including standardized procedures such as algorithm, logical and systematical process, and deliberation, while the students of right brain preference mainly showed factors including informal and intuitive knowledge, drawing for understanding problem situation, and overall examination of problem-solving process. Thus, the two types of students were different in selecting the factors of Schoenfeld's problem solving behavior based on the characteristics of their brain preference. Finally, based on the results showing that the factors of Schoenfeld's problem solving behavior were differently selected by brain preference, it may be suggested that teaching problem solving and feedback can be improved when presenting the factors of Schoenfeld's problem solving behavior selected more by students of left brain preference to students of right brain preference and vice versa.

  • PDF

A Historical and Mathematical Analysis on the Radian (라디안 개념의 역사적 분석과 수학적 분석)

  • Yoo, Jaegeun;Lee, Kyeong-Hwa
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.4
    • /
    • pp.833-855
    • /
    • 2017
  • This study aims to reinvestigate the reason for introducing radian as a new unit to express the size of angles, what is the meaning of radian measures to use arc lengths as angle measures, and why is the domain of trigonometric functions expanded to real numbers for expressing general angles. For this purpose, it was conducted historical, mathematical and applied mathematical analyzes in order to research at multidisciplinary analysis of the radian concept. As a result, the following were revealed. First, radian measure is intrinsic essence in angle measure. The radian is itself, and theoretical absolute unit. The radian makes trigonometric functions as real functions. Second, radians should be aware of invariance through covariance of ratios and proportions in concentric circles. The orthogonality between cosine and sine gives a crucial inevitability to the radian. It should be aware that radian is the simplest standards for measuring the length of arcs by the length of radius. It can find the connection with sexadecimal method using the division strategy. Third, I revealed the necessity by distinction between angle and angle measure. It needs justification for omission of radians and multiplication relationship strategy between arc and radius. The didactical suggestions derived by these can reveal the usefulness and value of the radian concept and can contribute to the substantive teaching of radian measure.

An Analysis on the Actual Conditions of the Mathematical Misconceptions Held by the Gifted Education Learners (수학영재교육 대상자의 수학용어에 대한 오개념 실태 조사)

  • Nam, Seung-In
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.15 no.1
    • /
    • pp.179-198
    • /
    • 2011
  • The understanding of mathematical concepts should be backed up on a constant basis in oder to grow problem-solving skills which is one of the ultimate goals of math education. The purpose of the study was to provide readers with the information which could be considered valuably for the math educators trying both to prevent mathematical misconceptions and to develop curricular program by estimating the actual conditions and developing backgrounds of the mathematical misconceptions held by the gifted education learners. Accordingly, this study, as the first step, theoretically examined the meaning and the developing background of mathematical misconception. As the second step, this study examined the actual conditions of mathematical misconceptions held by the participant students who were enrolled in the CTY(Center for Talented Youth) program run by a university. The results showed that the percentage of the correct statements made by participant students is only 35%. The results also showed that most of the participant students belonged either to the level 2 requiring students to distinguish examples from non-examples of the mathematical concepts or the level 3 requiring students to recognize and describe the common nature of the mathematical concepts with their own expressions based on the four-level of concept formulation. The causes could be traced to the presentation of limited example, wrong preconcept, the imbalance of conceptual definition and conceptual image. Based on the estimation, this study summarized a general plan preventing the mathematical misconceptions in a math classroom.

  • PDF

Misunderstandings and Logical Problems Related to the Centroid of a Polygon (도형의 무게중심과 관련된 오개념 및 논리적 문제)

  • Hong, Gap-Ju
    • School Mathematics
    • /
    • v.7 no.4
    • /
    • pp.391-402
    • /
    • 2005
  • The purpose of this study is to resolve misunderstanding for centroid of a triangle and to clarify several logical problems in finding the centroid of a Polygon. The conclusions are the followings. For a triangle, the misunderstanding that the centroid of a figure is the intersection of two lines that divide the area of the figure into two equal part is more easily accepted caused by the misinterpretation of a median. Concerning the equilibrium of a triangle, the median of it has the meaning that it makes the torques of both regions it divides to be equal, not the areas. The errors in students' strategies aiming for finding the centroid of a polygon fundamentally lie in the lack of their understanding of the mathematical investigation of physical phenomena. To investigate physical phenomena mathematically, we should abstract some mathematical principals from the phenomena which can provide the appropriate explanations for then. This abstraction is crucial because the development of mathematical theories for physical phenomena begins with those principals. However, the students weren't conscious of this process. Generally, we use the law of lever, the reciprocal proportionality of mass and distance, to explain the equilibrium of an object. But some self-evident principles in symmetry may also be logically sufficient to fix the centroid of a polygon. One of the studies by Archimedes, the famous ancient Greek mathematician, gives a solution to this rather awkward situation. He had developed the general theory of a centroid from a few axioms which concerns symmetry. But it should be noticed that these axioms are achieved from the abstraction of physical phenomena as well.

  • PDF