The purpose of this study is to improve forward mathematics study by analyzing the effects of the teaching and learning process applied situation-based mathematical problem posing activity on problem solving ability and mathematical attitudes. For this purpose, the research questions were established as follows: 1. How the situation-based mathematical problem posing activity(WQA activity) changes the problem solving ability of students? 2. How the situation-based mathematical problem posing activity(WQA activity) changes the mathematical attitudes of students? The results of the study were as follows: (1) There was significant difference between experimental group and comparative group in problem solving ability. This means that situation-based mathematical problem posing activity was generally more effective in improving problem solving ability than general classroom-based instruction. (2) There was not significant difference between experimental group and comparative group in mathematical attitudes. But the experimental group's average scores of mathematical attitudes except mathematical confidence was higher than comparative group's ones. And there was significant difference in the mathematical adaptability. The results obtained in this study suggest that the situation-based mathematical problem posing activity can be used to improve the students' problem solving ability and mathematical attitudes
We study existence of polynomial integrating factors and solutions F(x, y)=c of first order nonlinear differential equations. We characterize the homogeneous case, and give algorithms for finding existence of and a basis for polynomial solutions of linear difference and differential equations and rational solutions or linear differential equations with polynomial coefficients. We relate singularities to nature of the solution. Solution of differential equations in closed form to some degree might be called more an art than a science: The investigator can try a number of methods and for a number of classes of equations these methods always work. In particular integrating factors are tricky to find. An analogous but simpler situation exists for integrating inclosed form, where for instance there exists a criterion for when an exponential integral can be found in closed form. In this paper we make a beginning in several directions on these problems, for 2 variable ordinary differential equations. The case of exact differentials reduces immediately to quadrature. The next step is perhaps that of a polynomial integrating factor, our main study. Here we are able to provide necessary conditions based on related homogeneous equations which probably suffice to decide existence in most cases. As part of our investigations we provide complete algorithms for existence of and finding a basis for polynomial solutions of linear differential and difference equations with polynomial coefficients, also rational solutions for such differential equations. Our goal would be a method for decidability of whether any differential equation Mdx+Mdy=0 with polynomial M, N has algebraic solutions(or an undecidability proof). We reduce the question of all solutions algebraic to singularities but have not yet found a definite procedure to find their type. We begin with general results on the set of all polynomial solutions and integrating factors. Consider a differential equation Mdx+Ndy where M, N are nonreal polynomials in x, y with no common factor. When does there exist an integrating factor u which is (i) polynomial (ii) rational? In case (i) the solution F(x, y)=c will be a polynomial. We assume all functions here are complex analytic polynomial in some open set.
The operation theory of the Wittgenstein's Tractatus Logico-Philosophicus is the essential basis of the philosophy of mathematics of the Tractatus. Wittgenstein presents the definition of cardinal numbers on the basis of operation theory, and suggests the proof of "$2{\times}2=4$" by using the theory of operations in 6.241. Therefore, in order to explicate correctly the philosophy of mathematics, it is required to understand rigorously the theory of operations in the Tractatus. Accordingly in this paper, I will endeavor to explicate operation theory of the Tractatus as a preliminary study for explicating the philosophy of mathematics of the Tractatus. In this process, we can ascertain Frascolla's important contributions and fallacies in his reconstruction of 6.241. In particular, we can understand the background that in 6.241 Wittgenstein made mistakes and that there he dealt with the addition operation of the theory of operations, and on the basis of this, we can reconstruct correctly 6.241.
The purpose of this study is to empirically analyze the learning experiences of high school mathematics and science subjects of new students in science and engineering, and to provide basic data and respond to strengthen basic knowledge of science and engineering students in the future. The subjects of the survey were 481 freshmen in science and engineering at S University. First, as a result of analyzing the learning experiences of freshmen, the geometric subjects were significantly lower, which is the result of students' sensitive responses to transitional changes in the curriculum and SAT system after revision. In science, general elective subjects were higher than career elective subjects, and there was a deviation between science subjects, which is a result of reflecting the diversity and hierarchy of science subjects. Next, as a result of analyzing the difference in learning experience after revision compared to before the revision of the curriculum, the learning experience of Mathematics II increased significantly and the geometry decreased significantly. Both Chemistry I and II increased significantly compared to before the revision, and Earth Science I decreased significantly. This can be seen as a result of strategic choices based on obtaining grades in the CSAT and disadvantages in college entrance exams. As a result of the study, students' sensitive reactions to changes in the high school education environment were confirmed, basic mathematics and science-related courses were opened to alleviate variations in the academic ability due to elective courses, and countermeasures tailored to each university's situation.
Measurement in elementary school mathematics is one of the mathematical concepts that is directly used in real life. This study is based on the fact that mathematics textbooks for 3-4 and 5-6 graders were developed as the government designed and authorized textbooks and the general measurement instruction process is condensed and presented considering the limitation of the textbook's space for the capacity and weight. Its contents were analyzed. The results are as follows. The contents of authorized textbooks and government designed textbook are different in detail but similar overall in comparative activities, recognition, and situation of the need for the introduction of standard unit and estimation activities. Through this, it is proposed that efforts are needed to reform national textbook policies and develop textbooks that can highlight the meaning of each measurement activity and focus on students' activities.
The purpose of the present study is twofold: one is to understand secondary mathematics teachers' capacity to sort out given tasks based on Stein & Smith(1998)'s Cognitive Demands of Mathematical Task Framework; the second is to examine how the teachers assess the levels of cognitive demand indicated in students' reponses and how they modify the tasks to elicit the students' higher levels of cognitive activity. The analysis of 45 teachers' responses to the survey indicates that the teachers, in general, could select appropriate tasks for the given goal of the lessons but some made the decision merely by their appearances. Even though the teachers chose a particular level with different reasons amongst each other, most teachers could correctly evaluate the levels of cognitive demand of the students' responses. Finally, teachers could pose cognitively demanding tasks using various methods, but a number of them felt challenged in creating word problems that were realistic and aligned with curriculum.
North Korea had been reorganized its educational curriculum and new contexts were authored in 2013. In this study, mathematics contexts of North Korean secondary school's first grade in 2009 and 2013 were investigated. And the changes of content structure, content development, and content composition were analyzed. Results were as follows: First, with respect to the content structure, 1 chapter decreased, while lesson number was intact and 4 subunits increased. Second, with respect to the content development, considerable changes were presented. The tendencies that encouraged student and pursued a student friendly form were investigated. Third, with respect to the content composition, obvious changes were presented. It was investigated that the ratio of numbers and number operations, letters and expressions decreased nearly half. And new contents were supplemented in the areas of patterns, geometry, functions, probability and statics, equation of figures, set and statement. This changes suggests that differences between contexts of South and North Korea is narrowing compared to the past. In conclusion, the direction of North Korean mathematical education is changing for the general direction of South Korean mathematical education.
This study analyzed the academic achievements on above-level testing of mathematics, physics, chemistry, and English in newly entering students of science specialized high schools. It can be expected that newly students of science high specialized schools have reached ceiling level in the middle school mathematics and science academic scores. Above-level testing(or off-level testing) is a test tool used to evaluate student's ability which are above-grade level. In this study, above-level testing tools were used to develop the same type examination paper of the 2013 Korean College Scholastic Ability Test(CSAT) in mathematics, physics, chemistry, and English. The conclusions of this study were as follow: First, the academic achievement level of science specialized high school freshmen were higher the average level of general high school senior because that over 50% of them are within the 5 grade of CSAT in mathematics, physics, and chemistry. In English, 19.3% science specialized high school freshmen have reached within the 5 grade of CSAT. Second, as a result of examining characteristics of academic achievement with respect to units of subjects, in mathematics, it was showed that the academic achievement of 'continuity and limit of a function' unit was higher, 'statistics' unit was lower. In physics, the academic achievement of 'Electricity and Magnetism' unit was higher, 'Waves and particles' unit was lower. In chemistry, the academic achievement of 'compounds in life' unit was higher, 'Air' unit was lower. In English, the academic achievement of 'practical sentence' of reading area was higher, 'Sentence' of writing area was lower. In conclusion, above-level testing provided a good strategy for identifying and determining appropriate programming interventions for gifted students who are two or more grade levels above their age-mates in achievements, aptitude, or ability.
In general, the intuitive knowledge that can use in mathematics problem solving is one of the important knowledge to teachers as well as students. So, this study is aimed to analyze the elementary preservice teachers' intuitive knowledge in relation to intuitive and counter-intuitive problem solving. For this, I performed survey to use questionnaire consisting of problems that can solve in intuitive methods and cause the errors by counter-intuitive methods. 161 preservice teachers participated in this study. I got the conclusion as follows. preservice teachers' intuitive problem solving ability is very low. I special, many preservice teachers preferred algorithmic problem solving to intuitive problem solving. So, it's needed to try to improve preservice teachers' problem solving ability via ensuring both the quality and quantity of problem solving education during preservice training courses. Many preservice teachers showed errors with incomplete knowledges or intuitive judges in counter-intuitive problem solving process. For improving preservice teachers' intuitive problem solving ability, we have to develop the teacher education curriculum and materials for preservice teachers to go through intuitive mathematical problem solving. Add to this, we will strive to improve preservice teachers' interest about mathematics itself and value of mathematics.
This thesis is a study on the relation of between Xiangshu Zhouyi Theory and mathematics, Zhouyi Theory as the one of the study of Chinese classics, was formed by Zhouyi' Eight Diagrams, the theory of Yinyangwuxing and the knowledge of natural science in Han dynasty. 'Xiangshu' had been regarded as the important concept and theory in the history of Zhouyi Theory From the beginning of Han dynasty to the end of Qing dynasty. At this developing of this Periodical Change, 'Xiangshu' had been endoded in the expression system of mathematics. This thesis considers binary system and surplus nembers, multiple and progression, magic square and circular constant, a proportional expression from Zhouyi Theory point of view. Xiangshu Zhouyi theory got the answer of these questions like the origin of Zhouyi, interpreting Guayao-word and Cosmology by using those expression systems of mathematics. Besides mathematics, Xiangshu Zhouyi theory was also related to astronomy, medicine, etc. Xiangshu Zhouyi theory had kept the pace with the general development of natural science. This thesis from the premise that Xiangshu Zhouyi theory kept the pace with natural science, summing up the mathematical expression system in the history of Zhouyi theory, proves that Xiangshu Zhouyi theory had developed according as the conditions of natural science.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.