• Title/Summary/Keyword: general artificial intelligence

Search Result 279, Processing Time 0.023 seconds

Exploring the possibility of using ChatGPT and Stable Diffusion as a tool to recommend picture materials for teaching and learning

  • Soo-Hwan Lee;Ki-Sang Song
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.209-216
    • /
    • 2023
  • In this paper, artificial intelligence agents ChatGPT and Stable Diffusion were used to explore the possibility of educational use by implementing a program to recommend picture materials for teaching and learning according to the class topic entered by teachers. The average time spent recommending all picture materials is about 6 minutes. In general, pictures related to keywords were recommended, and the letters in the recommended pictures could only know the intention to represent the letters, and the letters could not be recognized and the meaning could not be known. However, further research seems to be needed on the fact that the type or content of the recommended picture depends entirely on the response of ChatGPT and that it is not possible to accurately recommend the picture for all keywords. In addition, it was concluded that it is true that the recommended picture is related to the keyword, but the evaluation of whether it has educational value is the subject of discussion that should be left to the judgment of human teachers.

A Design and Implementation of Online Exhibition Application for Disabled Artists

  • Seung Gyeom Kim;Ha Ram Kang;Tae Hun Kim;Jun Hyeok Lee;Won Joo Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.8
    • /
    • pp.77-84
    • /
    • 2024
  • In this paper, we design and implement an online exhibition application based on an Android platform that can showcase the artistic works of disabled artists. This application considers user convenience for disabled artists, particularly providing STT(Speech-to-Text) and TTS(Text-to-Speech) features for visually and hearing impaired individuals. Additionally, for the exhibition of works by disabled artists, the application implements disability certification during registration using disability certificates and registration numbers, ensuring that only authenticated disabled artists can exhibit their works. The database storing personal information of disabled artists and information about art pieces is implemented using MySQL. The server module utilizes RestAPI to transmit data in Json format. To address the large data size of art piece information, it is stored using Firebase Storage, eliminating data size limitations on the server. This application can alleviate issues such as a lack of exhibition space for disabled artists and a lack of communication with the general public.

A Study on Theological Students' Perception of Artificial Intelligence and the Christian Educational Implications (인공지능에 대한 신학생들의 인식 연구와 기독교교육학적 의의)

  • Im, Jun-Sub;Ham, Young-Ju
    • Journal of Christian Education in Korea
    • /
    • v.61
    • /
    • pp.233-262
    • /
    • 2020
  • Rapidly developing modern science &technology have a profound impact on Christians and pastoral work. Recently, the 4th Industrial Revolution has induced lots of discussions in the field of church and theology, and artificial intelligence (AI) has become an important issue in many ways. Nevertheless, there is a lack of empirical research on how the AI would affect church and pastoral work. This study examined and analyzed the theological students' perception of AI. A survey was conducted on the perception of seven sub-areas of 220 male and female theological students at major seminaries in Korea. The seven subareas were including the degree of interest in AI, social influence, AI's alternative influence, and AI's church influence. The results showed that theological students generally agree with the academic relevance of AI or the need for education on AI. However, it presented alow perception of the impact of AI on the church. Such recognition may reflect the following belief. Students are aware that the AI is a necessary and important part of social and general education, but at the same time, they think the AI may not significantly threaten the church. Therefore, wes uggest that considering a response of Christian education to raise the perception of theological students of AI, courses related to science and technology should be organized in the curriculum of seminaries at various levels from the perspective of the Christian worldview.

A Study on the Automatic Digital DB of Boring Log Using AI (AI를 활용한 시추주상도 자동 디지털 DB화 방안에 관한 연구)

  • Park, Ka-Hyun;Han, Jin-Tae;Yoon, Youngno
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.119-129
    • /
    • 2021
  • The process of constructing the DB in the current geotechnical information DB system needs a lot of human and time resource consumption. In addition, it causes accuracy problems frequently because the current input method is a person viewing the PDF and directly inputting the results. Therefore, this study proposes building an automatic digital DB using AI (artificial intelligence) of boring logs. In order to automatically construct DB for various boring log formats without exception, the boring log forms were classified using the deep learning model ResNet 34 for a total of 6 boring log forms. As a result, the overall accuracy was 99.7, and the ROC_AUC score was 1.0, which separated the boring log forms with very high performance. After that, the text in the PDF is automatically read using the robotic processing automation technique fine-tuned for each form. Furthermore, the general information, strata information, and standard penetration test information were extracted, separated, and saved in the same format provided by the geotechnical information DB system. Finally, the information in the boring log was automatically converted into a DB at a speed of 140 pages per second.

Contrast Media Side Effects Prediction Study using Artificial Intelligence Technique (인공지능 기법을 이용한 조영제 부작용 예측 연구)

  • Sang-Hyun Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.423-431
    • /
    • 2023
  • The purpose of this study is to analyze the factors affecting the classification of the severity of contrast media side effects based on the patient's body information using artificial intelligence techniques to be used as basic data to reduce the degree of contrast medium side effects. The data used in this study were 606 examiners who had no contrast medium side effects in the past history survey among 1,235 cases of contrast medium side effects among 58,000 CT scans performed at a general hospital in Seoul. The total data is 606, of which 70% was used as a training set and the remaining 30% was used as a test set for validation. Age, BMI(Body Mass Index), GFR(Glomerular Filtration Rate), BUN(Blood Urea Nitrogen), GGT(Gamma Glutamyl Transgerase), AST(Aspartate Amino Transferase,), and ALT(Alanine Amiono Transferase) features were used as independent variables, and contrast media severity was used as a target variable. AUC(Area under curve), CA(Classification Accuracy), F1, Precision, and Recall were identified through AdaBoost, Tree, Neural network, SVM, and Random foest algorithm. AdaBoost and Random Forest show the highest evaluation index in the classification prediction algorithm. The largest factors in the predictions of all models were GFR, BMI, and GGT. It was found that the difference in the amount of contrast media injected according to renal filtration function and obesity, and the presence or absence of metabolic syndrome affected the severity of contrast medium side effects.

The Utility of Chatbot for Learning in the Field of Radiology (방사선(학)과 분야에서 챗봇을 이용한 학습방법의 유용성)

  • Yoon-Seo Park;Yong-Ki Lee;Sung-Min Ahn
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.411-416
    • /
    • 2023
  • The purpose of this study is to investigate the utilization of major learning tools among radiology science students and assess the accuracy of a conversational artificial intelligence service program, specifically a chatbot, in the context of the national radiologic technologist licensing exam. The survey revealed that 84.3% of radiology science students actively utilize electronic devices during their learning process. In addition, 104 out of 140 respondents said they use search engines as a top priority for efficient data collection while studying. When asked about their awareness of chatbots, 80% of participants responded affirmatively, and 22.9% reported having used chatbots for academic purposes at least once. From 2018 to 2022, exam questions from the first and second periods were presented to the chatbot for answers. The results showed that ChatGPT's accuracy in answering first period questions increased from 48.28% to 60%, while for second period questions, it increased from 50% to 62.22%. Bing's accuracy in answering first period questions improved from 55% to 64.55%, and for second period questions, it increased from 48% to 52.22%. The study confirmed the general trend of radiology science students utilizing electronic devices for learning and obtaining information through the internet. However, conversational artificial intelligence service programs in the field of radiation science face challenges related to accuracy and reliability, and providing perfect solutions remains difficult, highlighting the need for continuous development and improvement.

Improving the Performance of Radiologists Using Artificial Intelligence-Based Detection Support Software for Mammography: A Multi-Reader Study

  • Jeong Hoon Lee;Ki Hwan Kim;Eun Hye Lee;Jong Seok Ahn;Jung Kyu Ryu;Young Mi Park;Gi Won Shin;Young Joong Kim;Hye Young Choi
    • Korean Journal of Radiology
    • /
    • v.23 no.5
    • /
    • pp.505-516
    • /
    • 2022
  • Objective: To evaluate whether artificial intelligence (AI) for detecting breast cancer on mammography can improve the performance and time efficiency of radiologists reading mammograms. Materials and Methods: A commercial deep learning-based software for mammography was validated using external data collected from 200 patients, 100 each with and without breast cancer (40 with benign lesions and 60 without lesions) from one hospital. Ten readers, including five breast specialist radiologists (BSRs) and five general radiologists (GRs), assessed all mammography images using a seven-point scale to rate the likelihood of malignancy in two sessions, with and without the aid of the AI-based software, and the reading time was automatically recorded using a web-based reporting system. Two reading sessions were conducted with a two-month washout period in between. Differences in the area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, and reading time between reading with and without AI were analyzed, accounting for data clustering by readers when indicated. Results: The AUROC of the AI alone, BSR (average across five readers), and GR (average across five readers) groups was 0.915 (95% confidence interval, 0.876-0.954), 0.813 (0.756-0.870), and 0.684 (0.616-0.752), respectively. With AI assistance, the AUROC significantly increased to 0.884 (0.840-0.928) and 0.833 (0.779-0.887) in the BSR and GR groups, respectively (p = 0.007 and p < 0.001, respectively). Sensitivity was improved by AI assistance in both groups (74.6% vs. 88.6% in BSR, p < 0.001; 52.1% vs. 79.4% in GR, p < 0.001), but the specificity did not differ significantly (66.6% vs. 66.4% in BSR, p = 0.238; 70.8% vs. 70.0% in GR, p = 0.689). The average reading time pooled across readers was significantly decreased by AI assistance for BSRs (82.73 vs. 73.04 seconds, p < 0.001) but increased in GRs (35.44 vs. 42.52 seconds, p < 0.001). Conclusion: AI-based software improved the performance of radiologists regardless of their experience and affected the reading time.

Governance research for Artificial intelligence service (인공지능 서비스 거버넌스 연구)

  • Soonduck Yoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.15-21
    • /
    • 2024
  • The purpose of this study is to propose a framework for the introduction and evaluation of artificial intelligence (AI) services not only in general applications but also in public policies. To achieve this, the study explores AI service management and governance toolkits, providing insights into how to introduce AI services in public policies. Firstly, it offers guidelines on the direction of AI service development and what aspects to avoid. Secondly, in the development phase, it recommends using the AI governance toolkit to review content through checklists at each stage of design, development, and deployment. Thirdly, when operating AI services, it emphasizes the importance of adhering to principles related to 1) planning and design, 2) the lifecycle, 3) model construction and validation, 4) deployment and monitoring, and 5) accountability. The governance perspective of AI services is crucial for mitigating risks associated with service provision, and research in risk management aspects should be conducted. While embracing the advantages of AI, proactive measures should be taken to address limitations and risks. Efforts should be made to efficiently formulate policies using AI technology to create high value and provide meaningful societal impacts.

Automatic detection and severity prediction of chronic kidney disease using machine learning classifiers (머신러닝 분류기를 사용한 만성콩팥병 자동 진단 및 중증도 예측 연구)

  • Jihyun Mun;Sunhee Kim;Myeong Ju Kim;Jiwon Ryu;Sejoong Kim;Minhwa Chung
    • Phonetics and Speech Sciences
    • /
    • v.14 no.4
    • /
    • pp.45-56
    • /
    • 2022
  • This paper proposes an optimal methodology for automatically diagnosing and predicting the severity of the chronic kidney disease (CKD) using patients' utterances. In patients with CKD, the voice changes due to the weakening of respiratory and laryngeal muscles and vocal fold edema. Previous studies have phonetically analyzed the voices of patients with CKD, but no studies have been conducted to classify the voices of patients. In this paper, the utterances of patients with CKD were classified using the variety of utterance types (sustained vowel, sentence, general sentence), the feature sets [handcrafted features, extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS), CNN extracted features], and the classifiers (SVM, XGBoost). Total of 1,523 utterances which are 3 hours, 26 minutes, and 25 seconds long, are used. F1-score of 0.93 for automatically diagnosing a disease, 0.89 for a 3-classes problem, and 0.84 for a 5-classes problem were achieved. The highest performance was obtained when the combination of general sentence utterances, handcrafted feature set, and XGBoost was used. The result suggests that a general sentence utterance that can reflect all speakers' speech characteristics and an appropriate feature set extracted from there are adequate for the automatic classification of CKD patients' utterances.

Implementation of Cough Detection System Using IoT Sensor in Respirator

  • Shin, Woochang
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.132-138
    • /
    • 2020
  • Worldwide, the number of corona virus disease 2019 (COVID-19) confirmed cases is rapidly increasing. Although vaccines and treatments for COVID-19 are being developed, the disease is unlikely to disappear completely. By attaching a smart sensor to the respirator worn by medical staff, Internet of Things (IoT) technology and artificial intelligence (AI) technology can be used to automatically detect the medical staff's infection symptoms. In the case of medical staff showing symptoms of the disease, appropriate medical treatment can be provided to protect the staff from the greater risk. In this study, we design and develop a system that detects cough, a typical symptom of respiratory infectious diseases, by applying IoT technology and artificial technology to respiratory protection. Because the cough sound is distorted within the respirator, it is difficult to guarantee accuracy in the AI model learned from the general cough sound. Therefore, coughing and non-coughing sounds were recorded using a sensor attached to a respirator, and AI models were trained and performance evaluated with this data. Mel-spectrogram conversion method was used to efficiently classify sound data, and the developed cough recognition system had a sensitivity of 95.12% and a specificity of 100%, and an overall accuracy of 97.94%.