• 제목/요약/키워드: gene-gene interactions

검색결과 471건 처리시간 0.026초

Grid-based Gaussian process models for longitudinal genetic data

  • Chung, Wonil
    • Communications for Statistical Applications and Methods
    • /
    • 제29권1호
    • /
    • pp.65-83
    • /
    • 2022
  • Although various statistical methods have been developed to map time-dependent genetic factors, most identified genetic variants can explain only a small portion of the estimated genetic variation in longitudinal traits. Gene-gene and gene-time/environment interactions are known to be important putative sources of the missing heritability. However, mapping epistatic gene-gene interactions is extremely difficult due to the very large parameter spaces for models containing such interactions. In this paper, we develop a Gaussian process (GP) based nonparametric Bayesian variable selection method for longitudinal data. It maps multiple genetic markers without restricting to pairwise interactions. Rather than modeling each main and interaction term explicitly, the GP model measures the importance of each marker, regardless of whether it is mostly due to a main effect or some interaction effect(s), via an unspecified function. To improve the flexibility of the GP model, we propose a novel grid-based method for the within-subject dependence structure. The proposed method can accurately approximate complex covariance structures. The dimension of the covariance matrix depends only on the number of fixed grid points although each subject may have different numbers of measurements at different time points. The deviance information criterion (DIC) and the Bayesian predictive information criterion (BPIC) are proposed for selecting an optimal number of grid points. To efficiently draw posterior samples, we combine a hybrid Monte Carlo method with a partially collapsed Gibbs (PCG) sampler. We apply the proposed GP model to a mouse dataset on age-related body weight.

HOTAIR Long Non-coding RNA: Characterizing the Locus Features by the In Silico Approaches

  • Hajjari, Mohammadreza;Rahnama, Saghar
    • Genomics & Informatics
    • /
    • 제15권4호
    • /
    • pp.170-177
    • /
    • 2017
  • HOTAIR is an lncRNA that has been known to have an oncogenic role in different cancers. There is limited knowledge of genetic and epigenetic elements and their interactions for the gene encoding HOTAIR. Therefore, understanding the molecular mechanism and its regulation remains to be challenging. We used different in silico analyses to find genetic and epigenetic elements of HOTAIR gene to gain insight into its regulation. We reported different regulatory elements including canonical promoters, transcription start sites, CpGIs as well as epigenetic marks that are potentially involved in the regulation of HOTAIR gene expression. We identified repeat sequences and single nucleotide polymorphisms that are located within or next to the CpGIs of HOTAIR. Our analyses may help to find potential interactions between genetic and epigenetic elements of HOTAIR gene in the human tissues and show opportunities and limitations for researches on HOTAIR gene in future studies.

Boosting Multifactor Dimensionality Reduction Using Pre-evaluation

  • Hong, Yingfu;Lee, Sangbum;Oh, Sejong
    • ETRI Journal
    • /
    • 제38권1호
    • /
    • pp.206-215
    • /
    • 2016
  • The detection of gene-gene interactions during genetic studies of common human diseases is important, and the technique of multifactor dimensionality reduction (MDR) has been widely applied to this end. However, this technique is not free from the "curse of dimensionality" -that is, it works well for two- or three-way interactions but requires a long execution time and extensive computing resources to detect, for example, a 10-way interaction. Here, we propose a boosting method to reduce MDR execution time. With the use of pre-evaluation measurements, gene sets with low levels of interaction can be removed prior to the application of MDR. Thus, the problem space is decreased and considerable time can be saved in the execution of MDR.

Replication of Early B-cell Factor 1 (EBF1) Gene-by-psychosocial Stress Interaction Effects on Central Adiposity in a Korean Population

  • Kim, Hyun-Jin;Min, Jin-Young;Min, Kyoung-Bok
    • Journal of Preventive Medicine and Public Health
    • /
    • 제49권5호
    • /
    • pp.253-259
    • /
    • 2016
  • Objectives: Central obesity plays a major role in the development of many chronic diseases, including cardiovascular disease and cancer. Chronic stress may be involved in the pathophysiology of central obesity. Although several large-scale genome-wide association studies have reported susceptibility genes for central adiposity, the effects of interactions between genes and psychosocial stress on central adiposity have rarely been examined. A recent study focusing on Caucasians discovered the novel gene early B-cell factor 1 (EBF1), which was associated with central obesity-related traits via interactions with stress levels. We aimed to evaluate EBF1 gene-by-stress interaction effects on central adiposity traits, including visceral adipose tissue (VAT), in Korean adults. Methods: A total of 1467 Korean adults were included in this study. We selected 22 single-nucleotide polymorphisms (SNPs) in the EBF1 gene and analyzed their interactions with stress on central adiposity using additive, dominant, and recessive genetic modeling. Results: The four SNPs that had strong linkage disequilibrium relationships (rs10061900, rs10070743, rs4704967, and rs10056564) demonstrated significant interactions with the waist-hip ratio in the dominant model ($p_{int}$<0.007). In addition, two other SNPs (rs6556377 and rs13180086) were associated with VAT by interactions with stress levels, especially in the recessive genetic model ($p_{int}$<0.007). As stress levels increased, the mean values of central adiposity traits according to SNP genotypes exhibited gradual but significant changes (p<0.05). Conclusions: These results suggest that the common genetic variants for EBF1 are associated with central adiposity through interactions with stress levels, emphasizing the importance of managing stress in the prevention of central obesity.

Bayesian mixed models for longitudinal genetic data: theory, concepts, and simulation studies

  • Chung, Wonil;Cho, Youngkwang
    • Genomics & Informatics
    • /
    • 제20권1호
    • /
    • pp.8.1-8.14
    • /
    • 2022
  • Despite the success of recent genome-wide association studies investigating longitudinal traits, a large fraction of overall heritability remains unexplained. This suggests that some of the missing heritability may be accounted for by gene-gene and gene-time/environment interactions. In this paper, we develop a Bayesian variable selection method for longitudinal genetic data based on mixed models. The method jointly models the main effects and interactions of all candidate genetic variants and non-genetic factors and has higher statistical power than previous approaches. To account for the within-subject dependence structure, we propose a grid-based approach that models only one fixed-dimensional covariance matrix, which is thus applicable to data where subjects have different numbers of time points. We provide the theoretical basis of our Bayesian method and then illustrate its performance using data from the 1000 Genome Project with various simulation settings. Several simulation studies show that our multivariate method increases the statistical power compared to the corresponding univariate method and can detect gene-time/ environment interactions well. We further evaluate our method with different numbers of individuals, variants, and causal variants, as well as different trait-heritability, and conclude that our method performs reasonably well with various simulation settings.

New Aspects of Gene-for-Gene Interactions for Disease Resistance in Plant

  • Nam, Jaesung
    • The Plant Pathology Journal
    • /
    • 제17권2호
    • /
    • pp.83-87
    • /
    • 2001
  • Disease resistance in plants is often controlled by gene-for-gene mechanism in which avirulence (avr) gene products encoding by pathogens are specifically recognized, either directly or indirectly by plant disease resistance (R) gene products. Recent studies arising from molecular cloning of a number of R genes from various plant species that confer resistance to different pathogens and corresponding avr genes from various pathogens resulted in the accumulation of a wealth of knowledge on mode of action of gene-for-gene interaction. Specially, members of the NBS-LRR class of R genes encoding proteins containing a nucleotide binding site (NBS) and carboxyl-terminal leucine-rich repeats (LRRs) confer resistance to very different types of phytopathogens, such as bacteria, fungi, oomycetes, viruses, nematodes and aphids. This article reviewed the molecular events that occur up-stream of defense response pathway, specially, bacterial avr gene protein recognition mediated by NBS-LRR type R gene product in plant based on current research results of well studied model plants.

  • PDF

Identification of Stearoyl-CoA Desaturase (SCD) Gene Interactions in Korean Native Cattle Based on the Multifactor-dimensionality Reduction Method

  • Oh, Dong-Yep;Jin, Me-Hyun;Lee, Yoon-Seok;Ha, Jae-Jung;Kim, Byung-Ki;Yeo, Jung-Sou;Lee, Jea-Young
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권9호
    • /
    • pp.1218-1228
    • /
    • 2013
  • Fat quality is determined by the composition of fatty acids. Genetic relationships between this composition and single nucleotide polymorphisms (SNPs) in the stearoyl-CoA desaturase1 (SCD1) gene were examined using 513 Korean native cattle. Single and epistatic effects of 7 SNP genetic variations were investigated, and the multifactor dimensionality reduction (MDR) method was used to investigate gene interactions in terms of oleic acid (C18:1), mono-unsaturated fatty acids (MUFAs) and marbling score (MS). The g.6850+77 A>G and g.14047 C>T SNP interactions were identified as the statistically optimal combination (C18:1, MUFAs and MS permutation p-values were 0.000, 0.000 and 0.001 respectively) of two-way gene interactions. The interaction effects of g.6850+77 A>G, g.10213 T>C and g.14047 C>T reflected the highest training-balanced accuracy (63.76%, 64.70% and 61.85% respectively) and was better than the individual effects for C18:1, MUFAs and MS. In addition, the superior genotype groups were AATTCC, AGTTCC, GGTCCC, AGTCCT, GGCCCT and AGCCTT. These results suggest that the selected SNP combination of the SCD1 gene and superior genotype groups can provide useful inferences for the improvement of the fatty acid composition in Korean native cattle.

빈발 유전자 발현 패턴과 연쇄 규칙을 이용한 유전자 조절 네트워크 구축 (Constructing Gene Regulatory Networks using Frequent Gene Expression Pattern and Chain Rules)

  • 이헌규;류근호;정두영
    • 정보처리학회논문지D
    • /
    • 제14D권1호
    • /
    • pp.9-20
    • /
    • 2007
  • 유전자들의 그룹은 복잡한 상호작용들을 통해 세포의 기능이 조절되며 이러한 상호작용을 하는 유전자 그룹들을 유전자 조절 네트워크 (GRNs: Gene Regulatory Networks)라고 한다. 이전의 유전자 발현 분석 기법인 군집화와 분류는 단지 상동성에 의한 유전자들 사이의 소속을 결정하는 데에는 유용하나 분자 활동에서의 같은 클래스에서 발견되어지는 유전자들 사이의 조절 관계를 식별할 수 없다. 더욱이 유전자들이 어떻게 연관되는 지와 유전자들이 서로 어떻게 조절하는지에 대한 매커니즘의 이해가 필요하다. 따라서 이 논문에서는 시계열 마이크로어레이 데이터로부터의 유전자들의 조절 관계를 발견하기 위해서 빈발 패턴 마이닝과 연쇄 규칙을 이용한 새로운 접근법을 제안하였다. 이 기법에서는 먼저, 빈발 패턴 마이닝 적용을 위한 적절한 데이터 변환 방법을 제안하였고 FP-growth을 이용하여 유전자 발현 패턴들을 발견한다. 그런 다음, 연쇄 규칙을 이용하여 빈발한 유전자 패턴들로부터 유전자 조절 네트워크를 구축하였다. 마지막으로 제안된 기법의 검증은 공개된 유전자들의 조절 관계와 실험 결과의 일치함을 보임으로써 평가하였다.

Screening assay for tomato plants resistant to Fusarium oxysporum f. sp. lycopersici race 2 using the expression of the avr2 gene as a selection marker

  • Kim, Mi-Reu;Lee, Jeong Jin;Min, Jiyoung;Kim, Sun Ha;Kim, Dae-Gyu;Oh, Sang-Keun
    • 농업과학연구
    • /
    • 제48권1호
    • /
    • pp.151-161
    • /
    • 2021
  • Fusarium wilt disease of tomato plants caused by Fusarium oxysporum f.sp. lycopersici (FOL race2) is one of the most important diseases of tomatoes worldwide. In the competition between tomato and FOL, the FOL can win by overcoming the immune system of tomato plants. Resistant interaction between the FOL race2 and tomato plants is controlled by avirulence genes (AVR2) in FOL and the corresponding resistance genes (I2) in tomato plants. In this study, 7 FOL isolates (KACC) were used to test their pathogenicity, and FOL race2 was selected because it is a broad problem in Korea. The Fol40044 isolates showed the most severe pathogenicity, and the avr2 gene was also isolated and identified. Moreover, to select resistance, 20 tomato varieties were inoculated with the Fol40044, and the degree of pathogenicity was evaluated by analyzing the expression of the avr2 gene. As a result, three resistant tomato varieties (PCNUF73, PCNUF101, PCNUF113) were selected, and the expression of the avr2 gene was much lower than that of the control Heinz cultivar. This result shows that the screening assay is very efficient when the avr2 gene is used as a marker to evaluate the expression level when selecting varieties resistant to tomato wilt disease. Based on these results, it is possible to isolate the I2 gene, which exhibits resistance and molecular biological interactions with the AVR2 gene from the three tomato-resistant varieties. The I2 gene provides breeders more opportunities for Fusarium disease resistance and may contribute to our understanding of their interactions with the FOL and host plant.

Novel Genome-Wide Interactions Mediated via BOLL and EDNRA Polymorphisms in Intracranial Aneurysm

  • Eun Pyo Hong;Dong Hyuk Youn;Bong Jun Kim;Jae Jun Lee;Sehyeon Nam;Hyojong Yoo;Heung Cheol Kim;Jong Kook Rhim;Jeong Jin Park;Jin Pyeong Jeon
    • Journal of Korean Neurosurgical Society
    • /
    • 제66권4호
    • /
    • pp.409-417
    • /
    • 2023
  • Objective : The association between boule (BOLL) and endothelin receptor type A (EDNRA) loci and intracranial aneurysm (IA) formation has been reported via genome-wide association studies. We sought to identify genome-wide interactions involving BOLL and EDNRA loci for IA in a Korean adult cohort. Methods : Genome-wide pairwise interaction analyses of BOLL and EDNRA involving 250 patients with IA and 296 controls were performed using the additive effect model after adjusting for confounding factors. Results : Among 512575 single-nucleotide polymorphisms (SNPs), 23 and 11 common SNPs suggested a genome-wide interaction threshold (p<1.25×10-8) involving rs700651 (BOLL) and rs6841581 (EDNRA). Rather than singe SNP effect of BOLL or EDNRA on IA development, they showed a synergistic effect on IA formation via multifactorial pair-wise interactions. The rs1105980 of PTCH1 gene showed the most significant interaction with rs700651 (natural log-transformed odds ratio [lnOR], 1.53; p=6.41×10-11). The rs74585958 of RYK gene interacted strongly with rs6841581 (lnOR, -19.91; p=1.64×10-9). Although, there was no direct interaction between BOLL and EDNRA variants, two EDNRA-interacting gene variants of TNIK (rs11925024 and rs1231) and FTO (rs9302654), and one BOLL-interacting METTL4 gene variant (rs549315) exhibited marginal interaction with BOLL gene. Conclusion : BOLL or EDNRA may have a synergistic effect on IA formation via multifactorial pair-wise interactions.