• Title/Summary/Keyword: gene set

Search Result 577, Processing Time 0.026 seconds

Isolation of indigenous Lactobacillus plantarum for malolactic fermentation (말로락틱 발효에 적합한 토착 Lactobacillus plantarum 분리)

  • Heo, Jun;Lee, Chan-Mi;Park, Moon Kook;Jeong, Do-Youn;Uhm, Tai-Boong
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.169-176
    • /
    • 2015
  • The malolactic fermentation (MLF), which is widely used in winemaking, is the conversion of malic acid to lactic acid conducted by the malolactic enzyme (Mle) of lactic acid bacteria. In order to select the strains with MLF among 54 lactic acid bacteria isolated from the traditionally fermented foods, we designed a primer set that specifically targets the conserved regions of the mle gene and then selected four strains that harbor the mle gene of Lactobacillus plantarum. All strains were identified as L. plantarum by analyzing the 16S rRNA sequences, biochemical properties, and the PCR products of the recA gene. From comparison of the mle gene sequences consisting of 1,644 bp, the nucleotide and amino acid sequence of strain JBE60 correspond to 96.7% and 99.5% with those of other three strains, respectively. The strain JBE60 showed the highest resistant against 10% (v/v) ethanol among the strains. The strains lowered the concentration of malic acid to average 43%. Considering the ethanol resistance and conversion of malic acid, the strain JBE60 is considered as a potential starter for the malolactic fermentation.

Effect of GC Content on Target Hook Required for Gene Isolation by Transformation-Associated Recombination Cloning (Transformation-associated recombination cloning에 의한 유전자 분리에 사용되는 target hook에 대한 GC content의 영향)

  • 김중현;신영선;윤영호;장형진;김은아;김광섭;정정남;박인호;임선희
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.128-134
    • /
    • 2003
  • Transformation-associated recombination (TAR) cloning is based on co-penetration into yeast spheroplasts of genomic DNA along with TAR vector DNA that contains 5'- and 3'-sequences (hooks) specific for a gene of interest, followed by recombination between the vector and the human genomic DNA to establish a circular YAC. Typically, the frequency of recombinant insert capture is 0.01-1% for single-copy genes by TAR cloning. To further refine the TAR cloning technology, we determined the effect of GC content on target hooks required for gene isolation utilizing the $Tg\cdot\AC$ mouse transgene as the targeted region. For this purpose, a set of vectors containing a B1 repeated hook and Tg AC-specific hooks of variable GC content (from 18 to 45%) was constructed and checked for efficiency of transgene isolation by radial TAR cloning. Efficiency of cloning decreased approximately 2-fold when the TAR vector contained a hook with a GC content ~${\leq}23$% versus ~40%. Thus, the optimal GC content of hook sequences required for gene isolation by TAR is approximately 40%. We also analyzed how the distribution of high GC content (65%) within the hook affects gene capture, but no dramatic differences for gene capturing were observed.

Identification of Microsatellite Markers Linked to Photoperiod Insensitive Gene Ppd-D1a in Wheat

  • Heo, Hwa-Young;Talbert, Luther;Blake, Nancy;Sherman, Jamie;Suh, Sae-Jung;Kim, Dea-Wook;Kim, Si-Ju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.1
    • /
    • pp.12-16
    • /
    • 2007
  • To facilitate breeding of lines with either the Ppd-D1a or ppd-d1a, we screened 342 $F_2$ progenies from a cross between Laura (photoperiod insensitive, Ppd-D1a) spring wheat and SWP5304 (photoperiod sensitive, ppd-d1a) for their time to heading under 10 hour day length, and with a set of 37 microsatellite primers previously mapped to chromosome 2D. Bulk segregant analysis was used to identify tow linked microsatellite loci. The Ppd-D1a locus was flanked by Xgwm484 with 13.7 cM distance and Xgwm455 with 27 cM. These markers may be useful in selection of the desired photoperiod sensitivity in segregating populations grown in Northern latitude.

Optimization of a Multiplex DNA Amplification of Three Short Tandem Repeat Loci for Genetic Identification

  • Ryu, Jae-Song;Noh, Jae-Sang;Koo, Yoon-Mo;Lee, Choul-Gyun;So, Jae-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.873-876
    • /
    • 2000
  • Short tendem repeat (STR) loci have been used in the field of forensic science. There are literally hundreds of STR systems which have been mapped throughout the human genome. These STR loci are found in almost every chromosome in the genome. They may be amplified using a variety of PCR primers. In this study, a DNA genotyping system based on the multiplex amplification of highly polymorphic STR loci was developed. Three STR loci with nonoverlapping allele size ranges have been utilized in the multiplex amplification including the Neurotensin receptor gene, D21S11, and Human tyrosine hydroxylase gene. The optimal condition for triplex PCr was obtained in a solution with a total volume of $25{\mu}l$ containing 2.0 U of Taq polymerase, 3 mM of $MgCl_2$, $300{\mu}M$ of dNTP, 10 pmole of each primer set, an annealing temperature of $62^{\circ}C$, and 35 cycles. The optimized condition was successfully employed in a family paternity test.

  • PDF

Similarities of Tobacco Mosaic Virus-Induced Hypersensitive Cell Death and Copper-Induced Abiotic Cell Death in Tobacco

  • Oh, Sang-Keun;Cheong, Jong-Joo;Ingyu Hwang;Park, Doil
    • The Plant Pathology Journal
    • /
    • v.15 no.1
    • /
    • pp.8-13
    • /
    • 1999
  • Hypersensitive cell death of plants during incompatible plant-pathogen interactions is one of the efficient defense mechanisms of plants against pathogen infections. For better understanding of the molecular mechanisms involved in the plant hypersensitive response (HR), TMV-induced biotic plant cell death and CuSO4-induced abiotic plant cell death were compared in terms of expression patterns of ten different defense-related genes as molecular markers. The genes include five pathogenesis-related protein genes, two plant secondary metabolite-associated genes, two oxidative stress-related genes and one wound-inducible gene isolated from tobacco. Northern blot analyses revealed that a same set of defense-related genes was induced during both biotic and abiotic cell death but with different time and magnitude. The expression of defense-related genes in tobacco plants was temporarily coincided with the time of cell death. However, when suspension cell cultures was used to monitor the expression of defense-related genes, different patterns of the gene expression were detected. This result implies that three are common and, in addition, also different branches of signaling pathways leading to the induced expression of defense-related genes in tobacco during the pathogen- and heavy metal-induced cell death.

  • PDF

Evaluation of Potential Reference Genes for Quantitative RT-PCR Analysis in Fusarium graminearum under Different Culture Conditions

  • Kim, Hee-Kyoung;Yun, Sung-Hwan
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.301-309
    • /
    • 2011
  • The filamentous fungus Fusarium graminearum is an important cereal pathogen. Although quantitative realtime PCR (qRT-PCR) is commonly used to analyze the expression of important fungal genes, no detailed validation of reference genes for the normalization of qRT-PCR data has been performed in this fungus. Here, we evaluated 15 candidate genes as references, including those previously described as housekeeping genes and those selected from the whole transcriptome sequencing data. By a combination of three statistical algorithms (BestKeeper, geNorm, and NormFinder), the variation in the expression of these genes was assessed under different culture conditions that favored mycelial growth, sexual development, and trichothecene mycotoxin production. When favoring mycelial growth, GzFLO and GzUBH expression were most stable in complete medium. Both EF1A and GzRPS16 expression were relatively stable under all conditions on carrot agar, including mycelial growth and the subsequent perithecial induction stage. These two genes were also most stable during trichothecene production. For the combined data set, GzUBH and EF1A were selected as the most stable. Thus, these genes are suitable reference genes for accurate normalization of qRT-PCR data for gene expression analyses of F. graminearum and other related fungi.

Cloning of the Setd1b gene of Mus musculus, a novel histone methyl transferase target in the epigenetic therapy of cancers

  • Morishita, Masayo;Cho, Minju;Ryu, Juhee;Mevius, Damiaan E.H.F.;Di Luccio, Eric
    • Current Research on Agriculture and Life Sciences
    • /
    • v.28
    • /
    • pp.63-68
    • /
    • 2010
  • The epigenetic therapy of cancers is emerging as an effective and valuable approach to both chemotherapy and the chemoprevention of cancer. The utilization of epigenetic targets that include histone methyltransferase (HMTase), Histone deacetylatase, and DNA methyltransferase, are emerging as key therapeutic targets. SET containing proteins such as the HMTase Setd1b has been found significantly amplified in cancerous cells. In order to shed some light on the histone methyl transferase family, we cloned the Setd1b gene from Mus musculus and build a collection of vectors for recombinant protein expression in E.coli that will pave the way for further structural biology studies. We prospect the role of the Setd1b pathway in cancer therapy and detail its unique value for designing novel anti-cancer epigenetic-drugs.

  • PDF

Rank-Based Nonlinear Normalization of Oligonucleotide Arrays

  • Park, Peter J.;Kohane, Isaac S.;Kim, Ju Han
    • Genomics & Informatics
    • /
    • v.1 no.2
    • /
    • pp.94-100
    • /
    • 2003
  • Motivation: Many have observed a nonlinear relationship between the signal intensity and the transcript abundance in microarray data. The first step in analyzing the data is to normalize it properly, and this should include a correction for the nonlinearity. The commonly used linear normalization schemes do not address this problem. Results: Nonlinearity is present in both cDNA and oligonucleotide arrays, but we concentrate on the latter in this paper. Across a set of chips, we identify those genes whose within-chip ranks are relatively constant compared to other genes of similar intensity. For each gene, we compute the sum of the squares of the differences in its within-chip ranks between every pair of chips as our statistic and we select a small fraction of the genes with the minimal changes in ranks at each intensity level. These genes are most likely to be non-differentially expressed and are subsequently used in the normalization procedure. This method is a generalization of the rank-invariant normalization (Li and Wong, 2001), using all available chips rather than two at a time to gather more information, while using the chip that is least likely to be affected by nonlinear effects as the reference chip. The assumption in our method is that there are at least a small number of non­differentially expressed genes across the intensity range. The normalized expression values can be substantially different from the unnormalized values and may result in altered down-stream analysis.

Sequence Analysis of the Coat Protein Gene of a Korean Isolate of Iris Severe Mosaic Potyvirus from Iris Plant

  • Park, Won-Mok;Lee, Sang-Seon;Park, Sun-Hee;Ju;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.16 no.1
    • /
    • pp.36-42
    • /
    • 2000
  • The coat protein gene of iris severe mosaic potyvirus, which was isolated in Korea, ISMV-K, from iris plant was cloned and its nucleotide sequence was determined. The coat protein of the virus contained 252 amino acid residues, including five potential N-glyxosylation site motifs. The coat protein of ISMV-K has 99.1% and 98.4% sequence identities with those of the Netherlands isolate of ISMV (ISMV-Ne) form crocus for the nucleotide and amino acids, respectively. The coat protein of ISMV-K has 50.4% to 60.3% nucleotide sequence identities and 47.3% to 55.7% amino acid identities with those of other 21 potyviruses, indicating ISMV to be a distinct species of the genus. The coat protein of ISMV-K was closely related with bean yellow mosaic virus and clover yellow vein virus in the phylogenetic tree analysis among the potyviruses analyzed. ISMV was easily and reliably detected from virus-infected iris leaves by RT-PCR with a set of the virus-specific primers.

  • PDF

The integration of genomics approaches for lettuce (Lactuca sativa L.) improvements on the disease resistances and other agronomic qualities.

  • Kim, Tae-Sung;Kim, Jeong-Haw;Kim, Jung-Bun;Jang, Suk-Woo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.114-114
    • /
    • 2017
  • The aim of this research is to improve Korean lettuce varieties in terms of Fusarium wilt, bolting under hot weather and nutritional function applying genomics approaches. To find related gene/molecular markers, we selected 96 lettuce varieties which are popular in domestic fresh vegetable markets. To construct frame works of the genomic approaches, we exploited GBS(Genotyping by Sequencing) and found total 61,407 SNPs from lettuce whole genomes (MAF>0.02). We observed that Three SNPs array per 100kb of lettuce genome. Average LD decay is expected to expand up to 3.9M(million)bp. Thus, we concluded that about 104 SNPs exist within a LD, which is sufficient to use GWAS(Genome-wide Association Study) to explore the useful gene/molecular markers. In addition, we optimized mass screening method to evaluate disease resistance levels against Fusarium wilt and are testing the bolting sensitivity during summer growing season for those lettuce allele mining set.

  • PDF