• Title/Summary/Keyword: gene repair

Search Result 296, Processing Time 0.028 seconds

Regulatory Expression of DNA Repair Genes Involved in Adaptive Response (적응반응 관련 DNA 회복유전자의 발현조절에 관한 연구)

  • 최수영;이희원;박상대
    • Environmental Mutagens and Carcinogens
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 1990
  • The regulation of DNA repair genes expression was investigated using fused genes, in which the promoter of repair genes was hybridized with the lacZ structural gene. The activities of beta-galactosidase expressed from the fused gense were highly increased when the host cells were exposed to methylating agents, such as methyl methansulfonate (MMS), N-methyl-N'-nitro-nitrosoguanidine (MNNG) and methyl nitrosourea (MNU). On the other hand, the enzyme activities from the fused genes were not induced when the cells were treated with ethylating or nonalkylating agents, such as ethyl methansulfonate (EMS), 4-nitroquinoline-1-oxide (4NQO), Bleomycin, and Benzo(a)pyrene (BP).

  • PDF

The Production of mutant protein by a transcription-based mechanism and in vivo technique for determining transcriptional mutagenesis

  • You, Ho-Jin
    • Proceedings of the PSK Conference
    • /
    • 2001.04a
    • /
    • pp.48-55
    • /
    • 2001
  • When an elongating RNA polymerase encounters DNA damage on the template strand of a transcribed gene it can either be arrested by or be transcribed through the lesion. Lesions that arrest RNA polymerases are thought to be subject to transcription-coupled repair, whereas that damage that is bypassed can cause miscoding, resulting in mutations in the transcript (transcriptional mutagenesis). We have developed a technique using a plasmid-based luciferase reporter assay to determine the extent to which a particular type of DNA base modification is capable of causing transcriptional mutagenesis in vivo. The system uses Escherichia coli strains with different DNA repair backgrounds and is designed to detect phenotypic changes caused by transcriptional mutageneis under nongrowth conditions. In addition, this method is capable of indicating the extent to which a particular DNA repair enzyme (or pathway) suppresses the occurrence of transcriptional mutagenesis. Thus, this technique provides a tool with which the effects of various genes on non-replication-dependent pathways resulting in the generation of mutant proteins can be gauged.

  • PDF

Loss of ARID1A Expression in Gastric Cancer: Correlation with Mismatch Repair Deficiency and Clinicopathologic Features

  • Kim, Kyung-Ju;Jung, Hae Yoen;Oh, Mee-Hye;Cho, Hyundeuk;Lee, Ji-Hye;Lee, Hyun Ju;Jang, Si-Hyong;Lee, Moon Soo
    • Journal of Gastric Cancer
    • /
    • v.15 no.3
    • /
    • pp.201-208
    • /
    • 2015
  • Purpose: The AT-rich interactive domain 1A (ARID1A ) gene encodes BRG1-associated factor 250a, a component of the SWItch/Sucrose NonFermentable chromatin remodeling complex, which is considered a tumor suppressor in many tumors. We aimed to investigate the prognostic significance of ARID1A expression in gastric cancers and explore its relationship with clinicopathologic parameters such as mismatch repair protein expression. Materials and Methods: Four tissue microarrays were constructed from 191 resected specimens obtained at Soonchunhyang University Cheonan Hospital from 2006 to 2008. Nuclear expression of ARID1A was semiquantitatively assessed and binarized into retained and lost expression. Results: Loss of ARID1A expression was observed in 62 cases (32.5%). This was associated with more frequent vascular invasion (P=0.019) and location in the upper third of the stomach (P=0.001), and trended toward more poorly differentiated subtypes (P=0.054). ARID1A loss was significantly associated with the mismatch repair-deficient phenotype (P=0.003). ARID1A loss showed a statistically significant correlation with loss of MLH1 (P=0.001) but not MSH2 expression (P=1.000). Kaplan-Meier survival analysis showed no statistically significant difference in overall survival; however, patients with retained ARID1A expression tended to have better overall survival than those with loss of ARID1A expression (P=0.053). In both mismatch repair-deficient and mismatch repair-proficient groups, survival analysis showed no differences related to ARID1A expression status. Conclusions: Our results demonstrated that loss of ARID1A expression is closely associated with the mismatch repair-deficient phenotype, especially in sporadic microsatellite instability-high gastric cancers.

Association between the XRCC3 Thr241Met Polymorphism and Breast Cancer Risk: an Updated Meta-analysis of 36 Case-control Studies

  • Mao, Chang-Fei;Qian, Wen-Yi;Wu, Jian-Zhong;Sun, Da-Wei;Tang, Jin-Hai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6613-6618
    • /
    • 2014
  • Background: The X-ray repair cross-complementing group 3 (XRCC3) is a highly suspected candidate gene for cancer susceptibility. Attention has been drawn upon associations of the XRCC3 Thr241Met polymorphism with breast cancer risk. However, the previous published findings remain controversial. Hence, we performed a meta-analysis to accurately evaluate any association between breast cancer and XRCC3 T241M (23, 812 cases and 25, 349 controls) in different inheritance models. Materials and Methods: PubMed and Web of Science databases were searched systematically until December 31, 2013 to obtain all the records evaluating the association between the XRCC3 Thr241Met polymorphism and breast cancer risk. Crude odds ratios (ORs) together with 95% confidence intervals (CIs) were used to assess the strength of associations. Results: When all eligible studies were pooled into the meta analysis of XRCC3 T241M polymorphism, a significantly increased breast cancer risk was observed in heterozygote comparison (OR=1.06, 95%CI=1.01-1.12). No significant associations were found in other models. In subgroup analysis, this polymorphism seemed to be associated with elevated breast risk in Asians. No publication bias was detected. Conclusions: This meta-analysis suggests that the T241M polymorphism confers a weakly increased breast cancer risk. A study with the larger sample size is needed to further evaluate gene-gene and gene-environment interactions of the XRCC3 T241M polymorphism with breast cancer risk.

The XRCC1 Arg399Gln Gene Polymorphism and Risk of Colorectal Cancer: a Study in Kashmir

  • Khan, Nighat Parveen;Pandith, Arshad Ahmad;Yousuf, Adfar;Khan, Nuzhat Shaheen;Khan, Mosin Saleem;Bhat, Imtiyaz Ahmad;Nazir, Zahoor Wani;Wani, Khursheed Alam;Hussain, Mahboob Ul;Mudassar, Syed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6779-6782
    • /
    • 2013
  • Background: The DNA repair gene XRCC1 Arg399Gln gene polymorphism has been found to be implicated in the development of various cancers, including colorectal cancer (CRC), in different populations. We aimed to determine any association of this polymorphism with the risk of CRC in Kashmir. Materials and Methods: A total of 120 confirmed cases of CRC and 146 healthy cancer free controls from the Kashmiri population were included in this study. Genotyping was carried out by the polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP) method. Results: Genotype frequencies of XRCC1 Arg399Gln observed in controls were 34.2%, 42.5% and 23.3% for GG (Arg/Arg), GA (Arg/Gln), AA( Gln/Gln), respectively, and 28.3%, 66.7% and 5% in cases, with an odds ratio (OR)=5.7 and 95% confidence interval (CI) =2.3-14.1 (p=0.0001). No significant association of Arg399Gln SNP with any clinicopathological parameters of CRC was found. Conclusions: We found the protective role of 399Gln allele against risk to the development of CRC. The XRCC1 heterozygote status appears to be a strong risk factor for CRC development in the Kashmiri population.

Microarray Analysis of Radiation Related Gene Expression in Mutants of Bacillus lentimorbus WJ5 Induced by Gamma Radiation (Bacillus lentimorbus WJ5의 감마선유도 돌연변이체들에서 공통으로 발현되는 방사선 관련 유전자의 microarray 분석)

  • Lee Young-Keun;Chang Hwa-Hyoung;Jang Yu-Sin;Huh Jae-Ho;Hyung Seok-Won;Chung Hye-Young
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.3
    • /
    • pp.472-477
    • /
    • 2004
  • To study the radiation related gene expression in mutants of Bacillus lentimorbus WJ5 induced by gamm radiation, the simultaneous gene expression was analyzed by DNA micro array. We constructed DNA chips including two thousand randomly digested genome spots of B. lentimorbus WJ5 and compared its quantitative aspect with seven mutants induced by gamma radiation $(^{60}/Co)$. From the cluster analysis of gene expression pattern, totally 408 genes were expressed and 27 genes were significantly upregulated by the gamma radiation in all mutants. Especially, genes involved in repair (mutL, mutM), energy metabolism (acsA, sdhB, pgk, yhjB, citB), protease (npr), and reduction response to oxidative stress (HMM) were simultaneously upregulated. It seems that the induction of the direct and/or indirect repair related genes in mutants induced by gamma radiation could be remarkably different from the adaptive responses against acute exposure to radiation.

Healing Effect of Danggwisu-san (Dangguixu-san) on Femur Fractured Mice (당귀수산(當歸鬚散)이 대퇴골절 유발 생쥐에 미치는 영향)

  • Jeon, Dong-Hwi;Oh, Min-Seok
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.31 no.1
    • /
    • pp.1-16
    • /
    • 2021
  • Objectives This study was designed to evaluate the effects of Danggwisu-san (Dangguixu-san, DG) on bone repair from femur fracture in mice. Methods Mice were randomly divided into 4 groups (normal, control, positive control and DG 300 mg/kg-treated group). In order to investigate the effects of DG on gene expressions in experimental animals with fracture, we measured the levels of bone morphogenetic protein-2 (BMP2), cyclooxygenase-2 (COX2), Sox9, collagen type II alpha 1 chain (Col2a1), runt-related transcription factor 2 (Runx2), osterix genes. After the cytotoxicity test, we analyzed the levels of expression of osteocalcin and Runx2, and tumor necrosis factor-α (TNF-α), a pro-inflammatory cytokine. The process of fusion in the fracture was also investigated by gross examination. Results Through in vivo BMP2, COX2 gene expression significantly decreased. Sox9 significantly increased. Col2a1, Runx2, osterix gene expression also increased as well, but there was no statistical significance. The degree of unilateral fracture fusion investigated by gross examination was significantly faster than those of the other groups. Through in vitro the level of TNF-α in macrophages was increased by DG in a dose-dependent mannerand and 250 and 500 ㎍/mL showed statistical significance. Osteocalcin and Runx2 genes expressions increased when DG was treated in osteoblasts. Conclusions DG promotes the healing of the fracture through the expression of bone repair-related genes and TNF-α production. This study may set the foundation for the clinical application of DG to the patients with bone fractures.

Egr-1 regulates the transcription of the BRCA1 gene by etoposide

  • Shin, Soon Young;Kim, Chang Gun;Lee, Young Han
    • BMB Reports
    • /
    • v.46 no.2
    • /
    • pp.92-96
    • /
    • 2013
  • The breast cancer susceptibility gene BRCA1 encodes a nuclear protein, which functions as a tumor suppressor and is involved in gene transcription and DNA repair processes. Many families with inherited breast and ovarian cancers have mutations in the BRCA1 gene. However, only a few studies have reported on the mechanism underlying the regulation of BRCA1 expression in humans. In this study, we investigated the transcriptional regulation of BRCA1 in HeLa cells treated with etoposide. We found that three Egr-1-binding sequences (EBSs) were located at -1031, -1005, and -385 within the enhancer region of the BRCA1 gene. Forced expression of Egr-1 stimulated the BRCA1 promoter activity. EMSA data showed that Egr-1 bound directly to the EBS within the BRCA1 gene. Knockdown of Egr-1 through the expression of a small hairpin RNA (shRNA) attenuated etoposide-induced BRCA1 promoter activity. We conclude that Egr-1 targets the BRCA1 gene in HeLa cells exposed to etoposide.

In Silico Analysis of Gene Function and Transcriptional Regulators Associated with Endoplasmic Recticulum (ER) Stress (Endoplasmic recticulum stress와 관련된 유전자기능과 전사조절인자의 In silico 분석)

  • Kim, Tae-Min;Yeo, Ji-Young;Park, Chan-Sun;Rhee, Moon-Soo;Jung, Myeong-Ho
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1159-1163
    • /
    • 2009
  • It has been postulated that endoplasmic (ER) stress is involved in the development of several diseases. However, the detailed molecular mechanisms have not been fully understood. Therefore, we characterized a genetic network of genes induced by ER stress using cDNA microarray and gene set expression coherence analysis (GSECA), and identified gene function as well as several transcription regulators associated with ER stress. We analyzed time-dependent gene expression profiles in thapsigargin-treated Sk-Hep1 using an oligonucleotide expression chip, and then selected functional gene sets with significantly high expression coherence which was processed into functional clusters according to the expression similarities. The functions related to sugar binding, lysosome, ribosomal protein, ER lumen, and ER to golgi transport increased, whereas the functions with mRNA processing, DNA replication, DNA repair, cell cycle, electron transport chain and helicase activity decreased. Furthermore, functional clusters were investigated for the enrichment of regulatory motifs using GSECA, and several transcriptional regulators associated with regulation of ER-induced gene expression were found.