• Title/Summary/Keyword: gene pyramiding

Search Result 19, Processing Time 0.031 seconds

Optimal Design for Marker-assisted Gene Pyramiding in Cross Population

  • Xu, L.Y.;Zhao, F.P.;Sheng, X.H.;Ren, H.X.;Zhang, L.;Wei, C.H.;Du, L.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.772-784
    • /
    • 2012
  • Marker-assisted gene pyramiding aims to produce individuals with superior economic traits according to the optimal breeding scheme which involves selecting a series of favorite target alleles after cross of base populations and pyramiding them into a single genotype. Inspired by the science of evolutionary computation, we used the metaphor of hill-climbing to model the dynamic behavior of gene pyramiding. In consideration of the traditional cross program of animals along with the features of animal segregating populations, four types of cross programs and two types of selection strategies for gene pyramiding are performed from a practical perspective. Two population cross for pyramiding two genes (denoted II), three population cascading cross for pyramiding three genes(denoted III), four population symmetry (denoted IIII-S) and cascading cross for pyramiding four genes (denoted IIII-C), and various schemes (denoted cross program-A-E) are designed for each cross program given different levels of initial favorite allele frequencies, base population sizes and trait heritabilities. The process of gene pyramiding breeding for various schemes are simulated and compared based on the population hamming distance, average superior genotype frequencies and average phenotypic values. By simulation, the results show that the larger base population size and the higher the initial favorite allele frequency the higher the efficiency of gene pyramiding. Parents cross order is shown to be the most important factor in a cascading cross, but has no significant influence on the symmetric cross. The results also show that genotypic selection strategy is superior to phenotypic selection in accelerating gene pyramiding. Moreover, the method and corresponding software was used to compare different cross schemes and selection strategies.

Development of the pyramiding lines with strong culm genes derived from crosses among the SCM near isogenic lines in rice

  • Ookawa, Taiichiro;Kamahora, Eri;Ebitani, Takeshi;Yamaguchi, Takuya;Murata, Kazumasa;Iyama, Yukihide;Ozaki, Hidenobu;Adachi, Shunsuke;Hirasawa, Tadashi;Kanekatsu, Motoki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.21-21
    • /
    • 2017
  • Severe lodging has recurrently occurred at strong typhoon's hitting in recent climate change. The identification of quantitative trait loci (QTLs) and their responsible genes associated with a strong culm and their pyramiding are important for developing high-yielding varieties with a superior lodging resistance. To identify QTLs for lodging resistance, the tropical japonica line, Chugoku 117 and the improved indica variety, Habataki were selected as the donor parent, as these had thick and strong culms compared with the temperate japonica varieties in Japan such as Koshihikari. By using chromosome segment substitution lines (CSSLs) in which chromosome segments from the japonica variety were replaced to them from Habataki, we identified the QTLs for strong culm on chrs. 1 and 6, which were designated as STRONG CULM1 (SCM1) and STRONG CULM2 (SCM2), respectively. By using recombinant inbred lines (BILs) derived from a cross between Chugoku 117 and Koshihikari and introgression lines, we also identified the other QTLs for strong culm on chrs. 3 and 2, which were designated as STRONG CULM3 (SCM3) and STRONG CULM4 (SCM4), respectively. Candidate region of SCM1 includes Gn1 related to grain number. SCM2 was identical to APO1, a gene related to the control of panicle branch number, and SCM3 was identical to FC1, a strigolactone signaling associated gene, by performing fine mapping and positional cloning of these genes. To evaluate the effects of SCM1~SCM4 on lodging resistance, the Koshihiakri near isogenic line (NIL) with the introgressed SCM1 or SCM2 locus of Habataki (NIL-SCM1, NIL-SCM2) and the another Koshihikari NIL with the introgeressed SCM3 or SCM4 locus of Chugoku 117 (NIL-SCM3, NIL-SCM4) were developed. Then, we developed the pyramiding lines with double or triple combinations derived from step-by-step crosses among NIL-SCM1 NIL-SCM4. Triple pyramiding lines (NIL-SCM1+2+3, ~ NIL-SCM1+3+4) showed the largest culm diameter and the highest culm strength among the combinations and increased spikelet number due to the pleiotropic effects of these genes. Pyramiding of strong culm genes resulted in much increased culm thickness, culm strength and spikelet number due to their additive effect. SCM1 mainly contributed to enhance their pyramiding effect. These results in this study suggest the importance of identifying the combinations of superior alleles of strong culm genes among natural variation and pyramiding these genes for improving high-yielding varieties with a superior lodging resistance.

  • PDF

Pyramiding transgenes for potato tuber moth resistance in potato

  • Meiyalaghan, Sathiyamoorthy;Pringle, Julie M.;Barrell, Philippa J.;Jacobs, Jeanne M.E.;Conner, Anthony J.
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.293-301
    • /
    • 2010
  • The feasibility of two strategies for transgene pyramiding using Agrobacterium-mediated transformation was investigated to develop a transgenic potato (Solanum tuberosum L. cv. Iwa) with resistance to potato tuber moth (PTM) (Phthorimaea operculella (Zeller)). In the first approach, cry1Ac9 and cry9Aa2 genes were introduced simultaneously using a kanamycin (nptII) selectable marker gene. The second approach involved the sequential introduction (re-transformation) of a cry1Ac9 gene, using a hygromycin resistance (hpt) selectable marker gene, into an existing line transgenic for a cry9Aa2 gene and a kanamycin resistance (nptII) selectable marker gene. Multiplex polymerase chain reaction (PCR) confirmed the presence of the specific selectable marker gene and both cry genes in all regenerated lines. The relative steady-state level of the cry gene transcripts in leaves was quantified in all regenerated lines by real-time PCR analysis. Re-transformation proved to be a flexible approach to effectively pyramid genes for PTM resistance in potato, since it allowed the second gene to be added to a line that was previously identified as having a high level of resistance. Larval growth of PTM was significantly inhibited on excised greenhouse-grown leaves in all transgenic lines, although no lines expressing both cry genes exhibited any greater resistance to PTM larvae over that previously observed for the individual genes. It is anticipated that these lines will permit more durable resistance by delaying the opportunities for PTM adaptation to the individual cry genes.

The Gene Pyramiding Effect of qBK1 and qFfR1 Genes of Major Resistance Genes in Bakanae Disease

  • Sais-Beul Lee;Sumin Jo;Jun-Hyun Cho;Nkulu Rolly Kabange;Ji-Yoon Lee;Yeongho Kwon;Ju-Won Kang;Dongjin Shin;Jong-Hee Lee;You-Cheon Song;Jong-Min Ko;Kyung-Min Kim;Dong-Soo Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.65-65
    • /
    • 2020
  • Bakanae disease, caused by Gibberella fujikuroi, is one of the most devastating diseases threatening rice production in Korea. In recent years, the incidence of bakanae disease became alarming due to the mechanical transplanting practice where the spread of bakanae can be amplified during accelerating seeds growth, due to the use of seeding boxes. The development of resistant rice cultivars could be the primary and effective method for controlling bakanae disease. However, the effects of individual resistance genes are relatively small. Therefore, pyramiding of bakane R genes in rice breeding is a promising strategy having a high potential to mitigate the advert effects of bakanae disease. This study employed a gene pyramiding approach to develop bakanae disease resistant rice lines carrying qBK1, qFfR1 introduced from rice line MY299BK and cv. Nampyeong, respectively. The MY299BK carries qBK1 introduced from cv. Shingwang, which was found to have a high resistance compare to Nampyeong. In addition, the pyramiding effect of the qBK1 and qFfR1 resistance genes were investigated, and the presence or absence of these genes helped us investigate their interaction through bioassay method and MAS. Furthermore, the distribution of resistance in the population showed a biased distribution toward resistance in the F6:7 populutions. However, we could not confirm the accumulation effect of the resistance gene, but the difference between the two genes by the SN2 marker was confirmed. Therefore, the qBK1 gene harbored by MY299BK appears to be different from the qFfR1 carried by Nampyeong, suspected to possess a different bakanae disease resistant gene different from those found in MY299BK and Nampyeong.

  • PDF

Association analysis of polymorphisms in six keratin genes with wool traits in sheep

  • Sulayman, Ablat;Tursun, Mahira;Sulaiman, Yiming;Huang, Xixia;Tian, Kechuan;Tian, Yuezhen;Xu, Xinming;Fu, Xuefeng;Mamat, Amat;Tulafu, Hanikezi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.6
    • /
    • pp.775-783
    • /
    • 2018
  • Objective: The purpose of this study was to investigate the genetic effects of six keratin (KRT) genes on the wool traits of 418 Chinese Merino (Xinjiang type) (CMXT) individuals. Methods: To explore the effects and association of six KRT genes on sheep wool traits, The polymerase chain reaction-based single-strand conformation polymorphism (PCR-SSCP), DNA sequencing, and the gene pyramiding effect methods were used. Results: We report 20 mutation sites (single-nucleotide polymorphisms) within the six KRT genes, in which twelve induced silent mutations; five induced missense mutations and resulted in $Ile{\rightarrow}Thr$, $Glu{\rightarrow}Asp$, $Gly{\rightarrow}Ala$, $Ala{\rightarrow}Ser$, $Se{\rightarrow}His$; two were nonsense mutations and one was a same-sense mutation. Association analysis showed that two genotypes of the KRT31 gene were significantly associated with fiber diameter (p<0.05); three genotypes of the KRT36 gene were significantly associated with wool fineness score and fiber diameter (p<0.05), three genotypes of the KRT38 gene were significantly associated with the number of crimps (p<0.05); and three genotypes of the KRT85 gene were significantly associated with wool crimps score, body size, and fiber diameter (p<0.05). Analysis of the gene pyramiding effect between the different genotypes of the gene loci KRT36, KRT38, and KRT85, each genotype in a gene locus was combined with all the genotypes of another two gene loci and formed the different three loci combinations, indicated a total of 26 types of possible combined genotypes in the analyzed population. Compared with the other combined genotypes, the combinations CC-GG-II, CC-HH-IJ, CC-HH-JJ, DD-HH-JJ, CC-GH-IJ, and CC-GH-JJ at gene loci KRT36, KRT38, and KRT85, respectively, had a greater effect on wool traits (p<0.05). Conclusion: Our results indicate that the mutation loci of KRT31, KRT36, KRT38, and KRT85 genes, as well as the combinations at gene loci KRT36, KRT38, and KRT85 in CMXT have significant effects on wool traits, suggesting that these genes are important candidate genes for wool traits, which will contribute to sheep breeding and provide a molecular basis for improved wool quality in sheep.

Development and Validation of a Perfect KASP Marker for Fusarium Head Blight Resistance Gene Fhb1 in Wheat

  • Singh, Lovepreet;Anderson, James A;Chen, Jianli;Gill, Bikram S;Tiwari, Vijay K;Rawat, Nidhi
    • The Plant Pathology Journal
    • /
    • v.35 no.3
    • /
    • pp.200-207
    • /
    • 2019
  • Fusarium head blight (FHB) is a devastating wheat disease with a significant economic impact. Fhb1 is the most important large effect and stable QTL for FHB resistance. A pore-forming toxin-like (PFT) gene was recently identified as an underlying gene for Fhb1 resistance. In this study, we developed and validated a PFT-based Kompetitive allele specific PCR (KASP) marker for Fhb1. The KASP marker, PFT_KASP, was used to screen 298 diverse wheat breeding lines and cultivars. The KASP clustering results were compared with gelbased gene specific markers and the widely used linked STS marker, UMN10. Eight disagreements were found between PFT_KASP and UMN10 assays among the tested lines. Based on the genotyping and sequencing of genes in the Fhb1 region, these genotypes were found to be common with a previously characterized susceptible haplotype. Therefore, our results indicate that PFT_KASP is a perfect diagnostic marker for Fhb1 and would be a valuable tool for introgression and pyramiding of FHB resistance in wheat cultivars.

Genetic analysis of clubroot resistance in Chinese cabbage using single spore isolate of Plasmodiophora brassicae and development of RAPD marker linked to its resistance gene

  • Cho, Kwang-Soo;Hong, Su-Young;Han, Young-Han;Yoon, Bong-Kyeong;Ryu, Seoung-Ryeol;Woo, Jong-Gyu
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.101-106
    • /
    • 2008
  • To identify inheritance of clubroot disease resistance genes in Chinese cabbage, seedling tests of $BC_1P_1,\;BC_1P_2$, and $F_2$ populations derived from $F_1$ hybrid(var. CR Saerona) using single spore isolate(race 4 identified with William's differential host) from Plasmodiophora brassciae were conducted. Resistance(R) and susceptible(S) plants segregated to 1:0 in backcross to the resistant parent. The $F_2$ population segregated in a 3(R):1(S) ratio. This result implied that the resistance of clubroot disease is controlled by a single dominant gene to the race 4 of P. brassicae in CR Saerona. To develop DNA markers linked to clubroot resistance genes, 185 plants of CR Saerona among $F_2$ populations were used. A total of 300 arbitrary decamer was applied to $F_2$ population using BSARAPD(Bulked segregant analysis-Randomly amplified polymorphic DNA). One RAPD marker linked to clubroot resistance gene in CR Saerona($OPJ_{1100}$) was identified. This marker was 3.1 cM in distance from resistance gene in $F_2$ population. This marker may be useful for a marker-assisted selection(MAS) and gene pyramiding of the clubroot disease resistant gene in Chinese cabbage breeding programs.

  • PDF

Development of Disease-resistant Japonica Rice Varieties and Effects of Pyramiding Resistance Genes (내병성 자포니카 벼 계통 육성과 저항성 유전자 집적효과)

  • Kim, Woo-Jae;Baek, Man-Kee;Park, Hyeon-Su;Lee, Geon-Mi;Lee, Chang-Min;Kim, Seok-Man;Cho, Young-Chan;Seo, Jeong-Phil;Jeong, O-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.314-326
    • /
    • 2020
  • This study was carried out to develop a resistant variety against the K3a race of bacterial blight, Xanthomonas oryzae pv. oryzae, through expansion and pyramiding of resistance genes. To develop an elite bacterial blight-resistant cultivar, the breeding process and bacterial blight resistance reactions in advanced backcross lines (ABLs) were analyzed. ABLs21 which contain Xa3 and Xa21, were developed by double backcrossing japonica cultivar Hwanggeumnuri, which has bacterial blight resistant Xa3 gene, and indica variety IRBB21, which havs Xa21 gene, followed by disease resistance bioassay and marker-assisted selection. The resistance genes of ABLs21 were amplified by PCR with the molecular markers 9643.T4 (Xa3) and U1/I1 (Xa21). Hwanggeumnuri and IRBB3 showed resistance reactions against K1, K2, and K3 races, and a susceptible reaction against K3a, K4, and K5 races. IRBB21 showed resistance reactions against K2, K3, K3a, K4 and K5 races, and a susceptible reaction against K1 race. Hwanggeumnuri showed susceptible reactions at the seedling, tillering and adult stages (all stages), whereas ABL21-1 showed moderate resistance at the tillering stage. ABL21-1 showed stable resistance against 18 isolates of K3a race, and the lesion length was shorter than that of the donor parents. In cluster analysis, the HB4032 isolate showed the highest pathogenicity among the 18 isolates. The molecular marker polymorphisms and average substituted chromosome segment lengths of ABLs21 were 63.2 % and 86.1 cM, respectively. Insertion of the donor chromosomal segments occurred in the predicted region of the Xa21 gene of ABLs21.

Plant biotech research and development for agribusiness in Jeju

  • Song, Pill-Soon
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.84-87
    • /
    • 2005
  • The citrus industry represents a major sector of agribusiness in Jeju successfully nurtured by the local governmental farm bureaus for the past three decades. However, in the face of increasing imports effected under the international free trade agreement, the continuous economic viability of the island’s citrus industry is no longer assured. Thus, it entails exploration and development of new agribusiness potentials that are supplemental and/or alternative to the citrus industry. In this presentation, I will discuss two projects of such potentials. (i) Under the tripartite collaboration among Kumho Life and Environmental Science Laboratory, Cheju National University and South Jeju County, genetically engineered turfgrass cultivars possessing both herbicide- and shade-tolerances (gene pyramiding) are currently at final phase of phenotype evaluations and environmental safety assessments. (ii) Fig fruits with longer shelf-life are being developed with support from Jeju HiTech Industrial Development Institute (HiDI) and at its initial phase of development.

  • PDF