• Title/Summary/Keyword: gene introgression

Search Result 39, Processing Time 0.025 seconds

Potential Risk of Genetically Modified Plants in Korean Ecosystem: a Proposal for Unintended Effects on Korean Wild Species

  • Shim, Sang-In;Lee, Byung-Moo;Kang, Byeung-Hoa
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.2
    • /
    • pp.157-163
    • /
    • 2001
  • Introgression from genetically modified plants (GMPs) may be dependent on the genetic similarity to wild relative plants. In Korea, many wild plant species are botanically related to the cultivated plants that have a potential to be genetically transformed. The controversy for hazards of GMPs is continuing because the studies on gene flow or introgression are little. Based on the systematic criteria, we have surveyed Korean wild plant species that showed the similarity to cultivating crops. The consideration for feasibility of genetic pollution (introgression of transgene) is necessary for the successful accomplishment in the practical use of GMPs. Although the detrimental effects of GMPs on wild relatives have not been clearly verified, Korean wild plant species related to crop plant (potential GMP) have to be investigated with respect to the introgression. Korean flora consists of ca. 5,500 species. Among them, 1,448 species are classified as weed species (966 native, 325 naturalized, and 167 escaped ones), which is vulnerable to GMPs in term of introgression. We suggested the principal Korean wild plants related to major crops that might be affected by GMPs via introgression. The investigated species herein are selected based on the morphological and phenological relationship. It is necessary to verify the genetic relationship between cultivated plants and wild relatives sing more precise molecular techniques, which provide the information of likelihood for the introgression of transgene.

  • PDF

Detection of Genetic Variation and Gene Introgression in Potato Dihaploids Using Randomly Amplified Polymorphic DNA (RAPD) Markers

  • Cho, Un-Haing;Cho, Hyun-Mook;Kim, Hei-Young
    • Journal of Plant Biology
    • /
    • v.39 no.3
    • /
    • pp.185-188
    • /
    • 1996
  • Randomly amplified polymorphic DNAs were employed to study the genetic variation and gene introgression in potato dihaploids (2n=24) which were generated after interspecific pollination of tetraploid cultivars (2n=4X=48, Solanum tuberosum cv Irish Cobbler, Superior and Dejima) by haploid inducer clones (2n=2X=24, Solanum phureja 1.22, Hes-5 and Hes-6). Genetic variation and DNA marker segregation among dihaploids were observed. Most dihaploids contain S. tuberosum specific RAPD markers but haploid inducer-specific RAPD markers were also found in some dihaploids. Of six different arbitrary 10-mer oligonucletide primers which showed polymorphism betwen tetraploid cultivars and haploid inducers used, three generated amplification products which seemed to be derived from the S. phureja parent. Our results indicate that chromosomes of dihaploids may not be pure S. tuberosum and the dihaploids may not be produced by parthenogenesis.

  • PDF

Improvement of Pre-harvest Sprouting Resistance in Korean japonica Varieties through a Precision Marker-based Breeding

  • Kamal Bhattarai;Patricia Izabelle Lopez;Sherry Lou Hechanova;Ji-Ung Jeung;Hyun-Sook Lee;Eok-Keun Ahn;Ung-Jo Hyun;Jong-Hee Lee;So-Myeong Lee;Jose E. Hernandez;Sung-Ryul Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.269-269
    • /
    • 2022
  • Pre-harvest sprouting (PHS) on rice panicles is getting problematic in recent several years in Korea due to climate changes such as high temperature and more frequent typhoons during harvesting season. PHS negatively affects grain quality severely and also yield. Genetic improvement of Korean varieties (Oryza sativa ssp. japonica) through a marker assisted-backcross breeding (MAB) with the known PHS resistant genes must be one of ideal solutions. However, the final breeding products of MAB occasionally exhibit unwanted traits, especially the cross between genetically distant parents. This might be caused by linkage drag and/or presence of the gene-unlinked donor introgressions, resulting that the final products could not be released to the farmers. The major PHS resistance gene, Sdr4 (Seed dormancy 4) originated from an indica cultivar, Kasalath was selected as a donor gene. In order to avoid unexpected phenotypes in the breeding products, we performed a precision marker-based breeding (PMBB) consisting of foreground, recombinant, and background selections (FS, RS, and BS) which aim to develop 'single small introgression lines' (~100 kb introgression). Korean varieties (Ilpum and Gopum) were crossed with Kasalath. We developed Sdr4-allele specific markers for FS and a set of polymorphic flanking markers near the Sdr4 (-350kb and +420kb) for RS. To minimize linkage drag, the small introgression (< 125kb) containing Sdr4 was selected in Ilpum background (BC2F4) through 1st RS with ~1,200 F2 or BC1F2 plants (one side trimmed) and then 2nd RS with ~1,000 progenies from the 1st RS selected plants (another side trimmed). After RS, the selected lines were genotyped by using Infinium 7K SNP chip to detect other donor introgressions and the lines were backcrossed. Currently BS is on-going from the backcross-derived progenies with BS markers to remove residual introgressions. During the PMBB process, genetic effect of Sdr-4-Kasalath allele was confirmed in Ilpum and Gopum backgrounds by PHS phenotyping using the segregating BC2F3 or BC1F4 materials. The Sdr4 PMBB lines in Ilpum background (< 125kb introgression) will be valuable genetic resources to improve PHS resistance in modem popular temperate japonica varieties.

  • PDF

Identification of QTLs for Some Agronomic Traits in Rice Using an Introgression Line from Oryza minuta

  • Rahman, Md Lutfor;Chu, Sang Ho;Choi, Min-Sun;Qiao, Yong Li;Jiang, Wenzhu;Piao, Rihua;Khanam, Sakina;Cho, Young-Il;Jeung, Ji-Ung;Jena, Kshirod K.;Koh, Hee-Jong
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.16-26
    • /
    • 2007
  • Wild progenitor species provide potential gene sources for complex traits such as yield and multiple resistances to biotic and abiotic stresses, and thus are expected to contribute to sustainable food supplies. An introgression line 'IR71033-121-15' was derived from a wild species Oryza minuta (2n = 48, BBCC, Acc No. 101141) at IRRI. Introgression analysis using 530 SSR and STS markers revealed that at least 14 chromosomal segments distributed over 12 chromosomes had been introgressed from O. minuta. An $F_{2:3}$ population from the cross between IR71033 and Junambyeo (a Korean japonica cultivar) consisting of 146 lines was used for quantitative trait loci (QTL) analysis of 16 agronomic traits. A total of 36 single-locus QTLs (S-QTLs) and 45 digenic epistasis (E-QTLs) were identified. In spite of it's inferiority of O. minuta for most of the traits studied, its alleles contributed positively to 57% of the QTLs. The other QTLs originated from either parent, IR71033 or Junambyeo. QTLs for phenotypically correlated traits were mostly detected on introgressed segments. Fourteen QTLs corresponded to QTLs reported earlier, indicating that these QTLs are stable across genetic backgrounds. Twenty-two QTLs controlling yield and its components had not been detected in previous QTL studies. Of these, thirteen consisted of potentially novel alleles from O. minuta. QTLs from O. minuta introgression could be new sources of natural variation for the genetic improvement of rice.

DNA Fingerprinting in Poultry Breeding and Genetic Analysis (DNA 지문을 이용한 가금의 유전분석과 개량)

  • 여정수
    • Korean Journal of Poultry Science
    • /
    • v.22 no.2
    • /
    • pp.97-104
    • /
    • 1995
  • Recently, DNA fingerprinting has been utilized as the most powerful tool for genetic analysis and improvement of poultry. This technique enables us to solve several problems of poultry breeding ; traits of low heritability, difficulty in keeping the performance records, measuring in late of life, and sex limited traits. Application of DNA fingerprinting is chiefly focused to individual and population identification, evolution force, quantitative trait marker, introgression of new gene, and prediction of heterosis. Thus, research work on DNA fingerprinting will he accelerated to analyze genetic components exactly and improve the performance of poultry.

  • PDF

Current Status of Quantitative Trait Locus Mapping in Livestock Species - Review -

  • Kim, Jong-Joo;Park, Young I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.4
    • /
    • pp.587-596
    • /
    • 2001
  • In the last decade, rapid developments in molecular biotechnology and of genomic tools have enabled the creation of dense linkage maps across whole genomes of human, plant and animals. Successful development and implementation of interval mapping methodologies have allowed detection of the quantitative trait loci (QTL) responsible for economically important traits in experimental and commercial livestock populations. The candidate gene approach can be used in any general population with the availability of a large resource of candidate genes from the human or rodent genomes using comparative maps, and the validated candidate genes can be directly applied to commercial breeds. For the QTL detected from primary genome scans, two incipient fine mapping approaches are applied by generating new recombinants over several generations or utilizing historical recombinants with identity-by-descent (IBD) and linkage disequilibrium (LD) mapping. The high resolution definition of QTL position from fine mapping will allow the more efficient implementation of breeding programs such as marker-assisted selection (MAS) or marker-assisted introgression (MAI), and will provide a route toward cloning the QTL.

Test of the hybrid origin of Broussonetia × kazinoki (Moraceae) in Korea using molecular markers

  • WON, Hyosig
    • Korean Journal of Plant Taxonomy
    • /
    • v.49 no.4
    • /
    • pp.282-293
    • /
    • 2019
  • Broussonetia × kazinoki Siebold has long been utilized as a major component in the manufacturing of Korean traditional paper, hanji, and has been suggested as a hybrid species of B. papyrifera and B. monoica. By applying three molecular markers, chloroplast (cp) ndhF-rpl32 IGS, a nuclear ribosomal internal transcribed spacer, and the TOPO6 gene, the hybrid origin of B. × kazinoki is tested. As a result, B. × kazinoki in Korea is demonstrated to be a hybrid of B. monoica × B. papyrifera, most likely formed naturally in Korea. The cp haplotypes detected provided information about the origins and genetic diversity of the maternal lineage B. monoica and paternal lineage B. papyrifera. The two nuclear markers were supplemented to each other, leading to the discovery of introgression in Broussonetia.

Development and Validation of a Perfect KASP Marker for Fusarium Head Blight Resistance Gene Fhb1 in Wheat

  • Singh, Lovepreet;Anderson, James A;Chen, Jianli;Gill, Bikram S;Tiwari, Vijay K;Rawat, Nidhi
    • The Plant Pathology Journal
    • /
    • v.35 no.3
    • /
    • pp.200-207
    • /
    • 2019
  • Fusarium head blight (FHB) is a devastating wheat disease with a significant economic impact. Fhb1 is the most important large effect and stable QTL for FHB resistance. A pore-forming toxin-like (PFT) gene was recently identified as an underlying gene for Fhb1 resistance. In this study, we developed and validated a PFT-based Kompetitive allele specific PCR (KASP) marker for Fhb1. The KASP marker, PFT_KASP, was used to screen 298 diverse wheat breeding lines and cultivars. The KASP clustering results were compared with gelbased gene specific markers and the widely used linked STS marker, UMN10. Eight disagreements were found between PFT_KASP and UMN10 assays among the tested lines. Based on the genotyping and sequencing of genes in the Fhb1 region, these genotypes were found to be common with a previously characterized susceptible haplotype. Therefore, our results indicate that PFT_KASP is a perfect diagnostic marker for Fhb1 and would be a valuable tool for introgression and pyramiding of FHB resistance in wheat cultivars.

Phylotranscriptomics of the Subfamily Apioideae (Apiaceae) (전사체 데이터에 의한 산형아과 (Apioideae)의 계통과 적응진화)

  • Eun Mi Lee;SeonJoo Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.11-11
    • /
    • 2023
  • Due to the abundance of information in Nuclear DNA, it has a magnificent phylogenetic resolution. Moreover, because they show biparental inheritance, it has proven to be superior to organelle DNA, which has a limited number of genes and only shows maternal lineage. In particular, the transcriptome, which includes much nuclear DNA but is relatively inexpensive to analyze, can provide valuable insights into evolution through selection analysis and enable gene function research. This study's dataset includes 45 transcriptomes (16 generated for this study). It aims to explore the evolutionary history of Apioideae by comparing the results of the phylogenetic analysis with gene tree discordance and chloroplast phylogeny. The results confirmed the taxonomic positions of Peucedanum terebinthaceum, Ligusticum tachiroei, and Cymopterus melanotilingia and proposed a genus change for Glehnia littoralis. High gene tree discordances were identified in recently diverged clades, suggesting frequent hybridization and introgression. In the most recently diverged tribe of Selineae, the highest number of PSGs (positively selected genes) has been confirmed, which is inferred to be due to the geological and climatic diversity of their originated habitat, Central Asia. These genes include those related to responses to growth and drought, oxidative, and salt stress. In particular, the CYP97A gene confirmed as PSGs in Bupleurum latissimum is inferred to be a result of adaptation to the light-limited environment of Ulleungdo Island, as it is associated with the efficiency of photosynthesis.

  • PDF