• Title/Summary/Keyword: gene integration

Search Result 321, Processing Time 0.026 seconds

Analysis of gene expression during odontogenic differentiation of cultured human dental pulp cells

  • Seo, Min-Seock;Hwang, Kyung-Gyun;Kim, Hyong-Bum;Baek, Seung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.3
    • /
    • pp.142-148
    • /
    • 2012
  • Objectives: We analyzed gene-expression profiles after 14 day odontogenic induction of human dental pulp cells (DPCs) using a DNA microarray and sought candidate genes possibly associated with mineralization. Materials and Methods: Induced human dental pulp cells were obtained by culturing DPCs in odontogenic induction medium (OM) for 14 day. Cells exposed to normal culture medium were used as controls. Total RNA was extracted from cells and analyzed by microarray analysis and the key results were confirmed selectively by reverse-transcriptase polymerase chain reaction (RT-PCR). We also performed a gene set enrichment analysis (GSEA) of the microarray data. Results: Six hundred and five genes among the 47,320 probes on the BeadChip differed by a factor of more than two-fold in the induced cells. Of these, 217 genes were upregulated, and 388 were down-regulated. GSEA revealed that in the induced cells, genes implicated in Apoptosis and Signaling by wingless MMTV integration (Wnt) were significantly upregulated. Conclusions: Genes implicated in Apoptosis and Signaling by Wnt are highly connected to the differentiation of dental pulp cells into odontoblast.

Increased Thermotolerance of Transgenic Rice Plant by Introduction of Thermotolerant Gene

  • Lee, Byung-Hyun;Won, Sung-Hye;Kim, Ki-Yong;Lee, Hyoshin;Jinki Jo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.2
    • /
    • pp.97-102
    • /
    • 2000
  • To increase thennotolerance of forage crops, transgenic rice plants as a model for transformation of monocots were generated. A cDNA encoding the chloroplast-localized small heat shock protein (small HSP) of rice, Oshsp21, was introduced into rice plants via Agrobacterium-mediated gene transfer system. Calli induced from scutella were co-cultivated with a A. tumefaciens strain EHAlOl canying a plasmid, pIGhsp21. A large number of transgenic plants were regenerated on a medium containing hygromycin. Integration of Oshsp2l gene was confirmed by PCR and Southern blot analyses with genomic DNA. Northern blot and immunoblot analyses revealed that the Oshsp21 gene was constitutively expressed and accumulated as mature protein in transgenic plants. Effects of constitutive expression of the OshspZl on thermotolerance were first probed with the chlorophyll fluorescence. Results indicate that inactivation of electron transport reactions in photosystem I1 (PSII), were mitigated by constitutive expression of the Oshsp21. These results suggest that the chloroplast small HSP plays an important role in protecting photosynthetic machinery during heat stress. (Key words : Thermotolerance, Rice, Transgenic, cDNA)

  • PDF

Isolation and Characterization of the Eicosapentaenoic Acid Biosynthesis Gene Cluster from Shewanella sp. BR-2

  • Lee, Su-Jin;Seo, Pil-Soo;Kim, Chul-Ho;Kwon, Oh-Suk;Hur, Byung-Ki;Seo, Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.881-887
    • /
    • 2009
  • Forty-four eicosapentaenoic acid (EPA)-producing microbial strains were isolated from the intestines of marine fishes. Among them, one strain showing a maximum level of EPA (4.78% of total fatty acids) was identified as Shewanella sp. BR-2 on the basis of its 168 rRNA sequence. The EPA content reached a maximum level during the mid-exponential phase of cell growth, and gradually decreased with further growth of the cells. A cosmid DNA including the EPA biosynthesis gene cluster consisting of pfaA-E was isolated from a cosmid library of genomic DNA of Shewanella sp. BR-2, named pCosEPA-BR2. An E. coli clone harboring pCosEPA-BR2 produced EPA at a maximum level of 7.5% of total fatty acids, confirming the EPA biosynthesis activity of the cloned gene cluster.

Induction of RNA-mediated Resistance to Papaya Ringspot Virus Type W

  • Krubphachaya, Pongrit;Juricek, Mila;Kertbundit, Sunee
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.404-411
    • /
    • 2007
  • Transformation of cantaloupes with the coat protein (cp) gene of papaya ringspot virus type W (PRSV-W), Thai isolate, was used to introduce virus resistance. Binary vectors containing either the full length coat protein coding region under control of the 35S CaMV promoter(pSA1175), or the inverted-repeat of a coat protein coding region (pSA1304), were constructed and used for Agrobacteriummediated transformation of cotyledonary explants of the cantaloupe cultivar Sun Lady. Four independent transgenic lines were obtained using pSA1304 and one using pSA1175. Integration of the PRSV-W cp gene into the genome of these transgenic lines was verified by PCR amplification, GUS assays and Southern blot hybridization. In vitro inoculation of these lines with PRSV-W revealed that whereas the line containing pSA1175 remained sensitive, the four lines containing pSA1304 were resistant. The presence of small RNA species, presumably siRNA, corresponding to regions of the viral cp gene in transgenic lines resistant to PRSV-W supports the involvement of post-transcriptional gene silencing in the establishment of resistance.

Antisense expression of a staygreen gene (SGR) delays leaf senescence in creeping bentgrass

  • Hwang, Ok-Jin;Han, Yun-Jeong;Paek, Nam-Chon;Kim, Jeong-Il
    • Rapid Communication in Photoscience
    • /
    • v.3 no.2
    • /
    • pp.28-31
    • /
    • 2014
  • Loss of chlorophyll is the visible symptom of leaf senescence and staygreen refers to the delayed leaf senescence in plants. The staygreen gene (SGR) in rice (Oryza sativa L.) has been identified as its mutation maintains greenness during leaf senescence, and encodes a chloroplast protein required for the initiation of chlorophyll breakdown in plants. In this study, we isolated a rice SGR-homologous gene in creeping bentgrass (Agrostis stolonifera L.), and transgenic creeping bentgrass plants were obtained by introducing pCAMBIA3301 vector harboring antisense SGR gene under control of the senescence-specific SAG12 promoter. Transgenic plants were selected by herbicide resistance assays and genomic integration of the transgenes was confirmed by PCR analysis. Subsequent analyses demonstrated the staygreen phenotype of the transgenic creeping bentgrass plants with decreased chlorophyll loss during leaf senescence. These results suggest that the antisense SGR expression in creeping bentgrass delays leaf senescence, which provides a way to develop genetically engineered turfgrass varieties with the commercially useful staygreen trait.

Inductional Expression of the Human Lactadherin Gene in Mouse Mammary Epithelial Cells

  • Kwon, Mo-Sun;Koo, Bon-Chul;Kim, Teoan
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.94-94
    • /
    • 2002
  • Lactadherin (formerly known as BA46), a major glycoprotein of the human milk fat globule membrane, is abundant in human breast milk and breast carcinomas and may prevent symptomatic rotavirus infections. In this study, under the control of mouse whey acidic protein (WAP) promoter, the expression pattern of lactadherin (Ltd) in lactogenic hormone-dependent mouse mammary epithelial cell line HC11 were tested. pLNWLtd construct containing 2.4 kilobases of the WAP promoter and 1.5 kilobases of human lactadherin gene was stably transfered into HC11 cells using retroviral vector system. Integration and expression level of the transgene was estimated using PCR and RT-PCR, respectively. Prominent induction of Ltd gene under the WAS promoter was accomplished in the presence of insulin, hydrocortisone and prolactin, while induction with insulin alone resulted in lower expression. Our results demonstrate that the expression of the transgene is increased by synergistic effect of several lactogenic hormones, including insulin, hydrocortisone, and prolactin.

  • PDF

Effects on the Development of Plutella xylostella and Spodoptera litura after Feeding on Transgenic Cabbage Expressing Potato Proteinase Inhibitor II and Bar Genes

  • Lee, Yeon-Hee;Lee, Sang-Guei;Park, Beom-Seok;Lee, Young-Su;Jin, Yong-Moon;Kim, Ho-il;Suh, Seok-Cheol
    • Journal of Plant Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.145-150
    • /
    • 2004
  • Cabbage plants were transformed with the potato proteinase inhibitor II (PINII) gene, bar gene, and hpt gene using Agrobacterium. The expression of the PINII gene was driven by its own promoter which was wound-inducible. Ten transgenic plants were obtained from medium containing hygromycin as a selection antibiotic. The integration and expression of PINII and bar genes were confirmed by Southern and Northern hybridization. Growth and development of diamondback moths (Plutella xylostella) and tobacco cutworm (Spodoptera litura) larvae were examined on $T_1$ plants. The weight of the larvae and pupae of these two insects grown on transgenic plants was not different compared to those grown on wild type plants. However, the pupation and emergence rate of diamondback moths and tobacco cutworms fed on some transgenic plants was lower than on wild type plants. These results suggest that the PINII transgene under the control of a wound-induced promoter may be used for control of insects in transgenic cabbage through reduction of insect progeny number.

Generation of a Transformant Showing Higher Manganese Peroxidase (Mnp) Activity by Overexpression of Mnp Gene in Trametes versicolor

  • Yeo, Su-Min;Park, Nam-Mee;Song, Hong-Gyu;Choi, Hyoung-T.
    • Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.213-218
    • /
    • 2007
  • Trametes versicolor has a lignin degrading enzyme system, which is also involved in the degradation of diverse recalcitrant compounds. Manganese-dependent peroxidase (MnP) is one of the lignin degrading enzymes in T. versicolor. In this study, a cDNA clone of a putative MnP-coding gene was cloned and transferred into an expression vector (pBARGPE1) carrying a phosphinothricin resistance gene (bar) as a selectable marker to yield the expression vector, pBARTvMnP2. Transformants were generated through genetic transformation using pBARTvMnP2. The genomic integration of the MnP clone was confirmed by PCR with bar-specific primers. One transformant showed higher enzyme activity than the recipient strain did, and was genetically stable even after 10 consecutive transfers on non-selective medium.

Preselection and cloning of transgenic emb (유전자전환 수정란의 선별과 복제)

  • Lee, Hyo-Jong
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 1998.05a
    • /
    • pp.12-28
    • /
    • 1998
  • The technology of creating transgenic animals has a potential value in improving productivity and disease resistance of animals, gene therapy, drug pharming and production of model animals for certain diseases. Up to date, fairly low success rate of production of transgenic animals and a pronounced variability with respect to the expression of transgenes have been much observed. The mechanisms how to integrate the injected genes with a certain part of the genomes are unknown yet. Many techniques in gene transfer, beside microinjection, have been introduced and explored thus to improve the production efficiency of transgenic animals. In this article, the methods and efficiency of gene-transfer techniques, the detection and preselection of transgenes in embryos by PCR- and GFP-screenings and cloning of preselected transgenic embryos by nuclear transplantation are described and discussed. Some experimental results showed that the early screening and selection of integration of the injected gene with embryonic genome by polymerase chain reaction(PCR) and green fluorecence protein(GFP) were promising methods. Further, the application of nuclear transplantation technology to cloning and multiplication of the positively integrated genes in the cleaving embryos and embryonic cells will be beneficially used for the mass production of transgenic embryos and consequently improving the production efficiency in transgenic animals.

  • PDF

Development of transgenic rice lines expressing the human lactoferrin gene

  • Lee, Jin-Hyoung;Kim, Il-Gi;Kim, Hyo-Sung;Shin, Kong-Sik;Suh, Seok-Cheol;Kweon, Soon-Jong;Rhim, Seong-Lyul
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.556-561
    • /
    • 2010
  • Lactoferrin is an 80-kDa iron-binding glycoprotein that is found in high concentrations in human milk. Human lactoferrin (hLF) has several beneficial biological activities including immune system modulation and antimicrobial activity. In the present study, we devolved a method of hLF expression through introducing the hLF gene construct into Oriza sativa cv. Nakdong using the Agrobacterium-mediated transformation system. The expression of the hLF gene under the control of the rice glutelin promoter was detected in the seeds of transgenic rice plants. Transformed rice plants were selected on media containing herbicide(DL-phosphinothricin) and the integration of hLF cDNA was confirmed by Southern blot analysis. The expression of the full length hLF protein from the grains of transgenic rice plants was verified by Western blot analysis. The lactoferrin expression levels in the transformed rice grains determined by enzyme-linked immunosorbant assay accounted for approximately 1.5% of total soluble protein. Taken together, these data indicate that rice grains expressing hLF can be directly incorporated into infant formula and baby food.