• Title/Summary/Keyword: gene integration

Search Result 321, Processing Time 0.027 seconds

Overproduction of Sodium Gluconate Using the Recombinant Aspergillus niger (재조합 Aspergillus niger에 의한 글루콘산나트륨의 산업적 생산)

  • 이선희;이현철;김대혁;양문식;정봉우
    • KSBB Journal
    • /
    • v.13 no.2
    • /
    • pp.214-219
    • /
    • 1998
  • Polymerase chain reaction(PCR) was conducted to obtain the gene encoding glucose oxidase(GOD) from Aspergillus niger(ATCC 2110) and the DNA sequence determined was coincided with published GOD sequence from A. niger. Recombinant transforming vector containing GOD and hygromycin B(hyg.B) resistant gene(hph) was constructed and used for further transformation of A. niger ATCC 2110. Selectivity of hyg.B against A. niger differed depending on which media were used i.e., nutrient-rich media such as potato dextrose agar(PDA) and complete medium(CM) showed only 50% growth inhibition at 400 $\mu$m ml$^-1$ of hyg.B while the minimal media inhibited mycelial growth completely at 200 $\mu$m ml$^-1$ of hyg.B. Twenty to sixty putative transformants were isolated from the hyg.B-containing minimal top agar, transferred successively onto alternating selective and nonselective media for a mitotic stability of hyg.B resistance and, then, single-spored. Among the stable transformants, the transformant(GOD1-6) grown by flask culture showed the considerable increase of extracellular GOD activity, which was estimated to the degree of 50% - 100% comparing to that of wild type. Transformation of tGOD1-6 was resulted from integration of the vectors into heterologous as well as homologous regions of the A. niger genome. Southern blot analysis revealed that there were two independent integrations of vector into fungal genome and one into the GOD gene due to homologous recombination. In addition, GOD activity and sodium gluconate production when tGOD1-6 was fed-batch fermented were enhanced 11 fold and 2.25 fold, respectively, compared to that of the wild type.

  • PDF

Biolistic transformation of Moroccan durum wheat varieties by using mature embryo-derived calli

  • Senhaji, Chaimae;Gaboun, Fatima;Abdelwahd, Rabha;Diria, Ghizlane;Udupa, Sripada;Douira, Allal;Iraqi, Driss
    • Journal of Plant Biotechnology
    • /
    • v.48 no.4
    • /
    • pp.246-254
    • /
    • 2021
  • Environmental stresses are estimated to have reduced global crop yields of wheat by 5.5%. However, traditional approaches for the transfer of resistance to these stresses in wheat plants have yielded limited results. In this regard, genetic transformation has undoubtedly opened up new avenues to overcome crop losses due to various abiotic stresses. Particle bombardment has been successfully employed for obtaining transgenic wheat. However, most of these procedures employ immature embryos, which are not available throughout the year. Therefore, the present investigation utilized mature seeds as the starting material and used the calli raised from three Moroccan durum wheat varieties as the target tissue for genetic transformation by the biolistic approach. The pANIC-5E plasmid containing the SINA gene for drought and salinity tolerance was used for genetic transformation. To enhance the regeneration capacity and transformation efficiency of the tested genotypes, the study compared the effect of copper supplementation in the induction medium (up to 5 μM) with the standard MS medium. The results show that the genotypes displayed different sensitivities to CuSO4, indicating that the transformation efficiency was highly genotype-dependent. The integration of transgenes in the T0 transformants was demonstrated by polymerase chain reaction (PCR) analysis of the obtained resistant plantlets with primers specific to the SINA gene. Among the three genotypes studied, 'Isly' showed the highest efficiency of 9.75%, followed by 'Amria' with 1.25% and 'Chaoui' with 1%.

Reversibility and safety of KISS1 metastasis suppressor gene vaccine in immunocastration of ram lambs

  • Han, Yan-Guo;Liu, Gui-Qiong;Jiang, Xun-Ping;Xiang, Xing-Long;Huang, Yong-Fu;Nie, Bin;Zhao, Jia-Yu;Nabeel, Ijaz;Tesema, Birhanu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.6
    • /
    • pp.835-841
    • /
    • 2018
  • Objective: The aim of this study was to investigate the reversibility and safety of KISS1 metastasis suppressor (KISS1) gene vaccine in immunocastration. Methods: Six eight-week old ram lambs were randomly divided into vaccinated and control groups. The vaccine (1 mg/ram lamb) was injected at weeks 0, 3, and 6 of the study. Blood samples were collected from the jugular vein before primary immunization and at weeks 2, 4, 6, 10, 14, 22, and 30 after primary immunization. All ram lambs were slaughtered at 38 weeks of age, and samples were collected. Results: The specific anti-KISS1 antibody titers in vaccinated animals were significantly higher and the serum testosterone level was significantly lower than those in the control groups from week 4 to 14 after primary immunization (p<0.05). No significant difference was observed at weeks 22 and 30 after the primary immunization. Similar results were also found for scrotal circumference, testicular weight, length, breadth, and spermatogenesis in seminiferous tubules in week 30 after primary immunization. KS (KISS1-hepatitis B surface antigen S) fusion fragment of KISS1 gene vaccine was not detected in host cell genomic DNA of 9 tissues of the vaccinated ram lambs by polymerase chain reaction. Conclusion: The effects of KISS1 gene vaccine in immunocastration were reversible and no integration events were recorded.

Development of herbicide-tolerant Korean rapeseed (Brassica napus L.) cultivars (한국 고유의 품종을 이용한 제초제 저항성 유채 개발)

  • Kim, Hyo-Jin;Lee, Hye-Jin;Go, Young-Sam;Roh, Kyung-Hee;Lee, Young-Hwa;Jang, Young-Seok;Suh, Mi-Chung
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.319-326
    • /
    • 2010
  • An interest in the production of seed-oil based fuel and raw materials, which comes from renewable plant sources, has been intrigued by the phenomenon of global warming and shortage of fossil fuels. Rapeseed (Brassica napus) is the most important oilseed crop, which produces seeds with 40% oil. It is desirable to develop genetically modified rapeseed producing oils, which can be easily converted to biodiesel. As an initial step for development of genetically modified rapeseed for the production of biofuels or bio-based materials, Korean rapeseed cultivars, Naehan, Youngsan, Tammi and Halla, were analyzed. Four Korean rapeseed cultivars produce 32 to 40% oil of seed dry weight, which is rich in oleic acid (more than 60 mole%). The cotyledonary petioles of rapeseed cultivar, Halla, were transformed using Agrobacterium tumefaciens strain GV3101, carrying the uidA gene encoding $\beta$-glucuronidase (GUS) as a reporter gene and the phosphinothricin acetyltransferase (PAT) gene as a selectable marker. The stable integration of PAT gene in the genome of transgenic rapeseeds was confirmed by PCR analysis. Expression of uidA gene in various rapeseed organs was determined by fluorometric assay and histochemical staining. Transformation efficiency of a Korean rapeseed Halla cultivar was 10.4%. Genetic inheritance of transgenes was confirmed in $T_2$ generation.

Field Performance and Morphological Characterization of Transgenic Codonopsis lanceolata Expressing $\gamma-TMT$ Gene.

  • Ghimire, Bimal Kumar;Li, Cheng Hao;Kil, Hyun-Young;Kim, Na-Young;Lim, Jung-Dae;Kim, Jae-Kwang;Kim, Myong-Jo;Chung, Ill-Min;Lee, Sun-Joo;Eom, Seok-Hyun;Cho, Dong-Ha;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.5
    • /
    • pp.339-345
    • /
    • 2007
  • Field performance and morphological characterization was conducted on seven transgenic lines of Codonopsis lanceolata expressing ${\gamma}-TMT$ gene. The shoots were obtained from leaf explants after co-cultivation with Agrobacterium tume-faciens strain LBA 4404 harboring a binary vector pYBI 121 that carried genes encoding ${\gamma}-Tocopherol$ methyltransferase gene (${\gamma}-TMT$) and a neomycin phosphotransferase II gene (npt II) for kanamycin resistance. The transgenic plants were transferred to a green house for acclimation. Integration of T-DNA into the $T_0\;and\;T_1$ generation of transgenic Codonopsis lanceolata genome was confirmed by the polymerase chain reaction and southern blot analysis. The progenies of transgenic plants showed phenotypic differences within the different lines and with relative to control plants. When grown in field, the transgenic plants in general exhibited increased fertility, significant improvement in the shoot weight, root weight, shoot height and rachis length with relation to the control plants. However, all seven independently derived transgenic lines produced normal flower with respect to its shape, size, color and seeds number at its maturity. Indicating that the addition of a selectable marker gene in the plant genome does not effect on seed germination and agronomic performance of transgenic Codonopsis lanceolata. $T_1$ progenies of these plants were obtained and evaluated together with control plant in a field experiment. Overall, the agronomic performance of $T_1$ progenies of transgenic Codonopsis lanceolata showed superior to that of the seed derived non-transgenic plant. In this study, we report on the morphological variation and agronomic performance of transgenic Codonopsis lanceolata developed by Agrobacterium transformation.

Analysis of Transgenic Mouse, for the Production of Immunodeficiency Animals (면역결핍동물의 생산을 위한 형질전환생쥐의 분석)

  • 나루세겐지;양정희;이승현;최화식;이성호;박창식;진동일
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.2
    • /
    • pp.179-185
    • /
    • 2003
  • To determine whether the diphtheria toxin-A (DT) gene disrupts development of thymocytes in transgenic animal, the DT-A gene was used for the production of transgenic mice directed by proximal Ick promoter sequences. Two transgenic founder mice that contained several copies of transgene were produced by DNA microinjection and integration of transgene in transgenic mice was confirmed by PCR and Southern blotting analysis. Transgenic $F_1$ and $F_2$ mice were produced by outbreeding of founder and $F_1$ mice to investigate expression of transgene and phenotypes in transgneic mice. Expression of the diphtheria toxin gene was confirmed in thymus, spleen and liver of transgenic mice by RT-PCR. In circulating blood of transgenic mice, lower number of circulating white blood cells and platelets were observed compared with that of normal mice. In addition, transgneic mice had reduced number of circulating peripheral T-cells analyzed by FACS with anti-CD3 antibody. The data in these transgenic mice indicate that DT gene can play a disruptive role in developing thymocytes of transgenic mice resulted in lower number of T-cells that can be applicable to a wide range of tissues in other animals.

A Study on Gene Detection using Non-labeling DNA

  • Choi Yong-Sung;Lee Kyung-Sup;Kwon Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.960-965
    • /
    • 2006
  • This research aims to develop the multiple channel electrochemical DNA chip using microfabrication technology. At first, we fabricated a high integration type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the gold electrodes. Then target DNAs were hybridized and reacted. Cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. Therefore, it is able to detect a plural genes electrochemically after immobilization of a plural probe DNA and hybridization of non-labeling target DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

Expression of Helicobacter pylori urease in plants to use as an edible vaccine

  • Gang, Gwi-Hyeon;Han, So-Cheon;Gang, Tae-Jin;Yang, Mun-Sik
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.186-189
    • /
    • 2003
  • Helicobacter pylori is the etiologic agent of human gastritis and peptic ulceration and produces urease as the major protein component on its surface. H. pylori urease is known to serve as a potent immunogen as well as major virulence factor. In order to express the recombinant urease in tobacco plants, a DNA fragment containing the minimal H. pylori urease gene cluster was subcloned into a plant expression vector. The recombinant vector was transformed to tobacco plants. The integration of the recombinant plasmids into tobacco chromosomal genome was verified by genomic PCR. Expression to mRNA was confirmed by Northern blot analysis, and expression to recombinant urease protein was observed by Western blot analysis. These results showed that the recombinant urease can be produced in tobacco plants and will be tested for immune response to use as an edible vaccine.

  • PDF

Proteomics-driven Identification of Putative AfsR2-target Proteins Stimulating Antibiotic Biosynthesis in Streptomyces lividans

  • Kim Chang-Young;Park Hyun-Joo;Kim Eung-Soo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.248-253
    • /
    • 2005
  • AfsR2, originally identified from Streptomyces lividans, is a global regulatory protein which stimulates antibiotic biosynthesis. Through its stable chromosomal integration, the high level of gene expression of afsR2 significantly induced antibiotic production as well as the sporulation of S. lividans, implying the presence of yet-uncharacterized AfsR2-target proteins. To identify and evaluate the putative AfsR2-target proteins involved in antibiotic regulation, the proteomics-driven approach was applied to the wild-type S. lividans and the afsR2-integrated actinorhodin overproducing strain. The 20 gel-electrophoresis gave approximately 340 protein spots showing different protein expression patterns between these two S. lividans strains. Further MALDI-TOF analysis revealed several AfsR2-target proteins, including glyceraldehyde-3-phosphate dehydrogenase, putative phosphate transport system regulator, guanosine penta phosphate synthetase/polyribonucleotide nucleotidyltransferase, and superoxide dismutase, which suggests that the AfsR2 should be a pleiotropic regulatory protein which controls differential expressions of various kinds of genes in Streptomyces species.

The Production of Transgenic Livestock and Its Applications

  • Han, Y. M;Lee, K. K.
    • Korean Journal of Animal Reproduction
    • /
    • v.23 no.4
    • /
    • pp.381-391
    • /
    • 1999
  • During the last 20 years, transgenic animal technology has provided revolutionary new opportunities in many aspects of agriculture and biotechnology. Several gene delivery systems including pronuclear injection, retroviral vectors, sperm vectors, and somatic cell cloning have developed for making transgenic animals. In the future major improvements in transgenic animal generation will be mainly covered by somatic cell cloning technology. Many factors affecting integration frequency and expression of the transgenes should be overcome to facilitate the industrial applications of transgenic technology. Transgenic animal technology has settled down in some areas of the biotechnology, especially the mass production of valuable human proteins and xenotransplantation. In the 21st century animal biotechnology will further contribute to welfare of human being.

  • PDF