• Title/Summary/Keyword: gene expression programming (GEP)

Search Result 29, Processing Time 0.021 seconds

Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP

  • Saridemir, Mustafa
    • Computers and Concrete
    • /
    • v.17 no.4
    • /
    • pp.489-498
    • /
    • 2016
  • In this paper, the flexural strength ($f_{fs}$) and splitting tensile strength ($f_{sts}$) of concrete containing different proportions of fly ash have been modeled by using gene expression programming (GEP). Two GEP models called GEP-I and GEP-II are constituted to predict the $f_{fs}$ and $f_{sts}$ values, respectively. In these models, the age of specimen, cement, water, sand, aggregate, superplasticizer and fly ash are used as independent input parameters. GEP-I model is constructed by 292 experimental data and trisected into 170, 86 and 36 data for training, testing and validating sets, respectively. Similarly, GEP-II model is constructed by 278 experimental data and trisected into 142, 70 and 66 data for training, testing and validating sets, respectively. The experimental data used in the validating set of these models are independent from the training and testing sets. The results of the statistical parameters obtained from the models indicate that the proposed empirical models have good prediction and generalization capability.

Flexural capacity estimation of FRP reinforced T-shaped concrete beams via soft computing techniques

  • Danial Rezazadeh Eidgahee;Atefeh Soleymani;Hamed Hasani;Denise-Penelope N. Kontoni;Hashem Jahangir
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • This paper discusses a framework for predicting the flexural strength of prestressed and non-prestressed FRP reinforced T-shaped concrete beams using soft computing techniques. An analysis of 83 tests performed on T-beams of varying widths has been conducted for this purpose with different widths of compressive face, beam depth, compressive strength of concrete, area of prestressed and non-prestressed FRP bars, elasticity modulus of prestressed and non-prestressed FRP bars, and the ultimate tensile strength of prestressed and non-prestressed FRP bars. By analyzing the data using two soft computing techniques, named artificial neural networks (ANN) and gene expression programming (GEP), the fundamental parameters affecting the flexural performance of prestressed and non-prestressed FRP reinforced T-shaped beams were identified. The results showed that although the proposed ANN model outperformed the GEP model with higher values of R and lower error values, the closed-form equation of the GEP model can provide a simple way to predict the effect of input parameters on flexural strength as the output. The sensitivity analysis results revealed the most influential input parameters in ANN and GEP models are respectively the beam depth and elasticity modulus of FRP bars.

Prediction Model for Specific Cutting Energy of Pick Cutters Based on Gene Expression Programming and Particle Swarm Optimization (유전자 프로그래밍과 개체군집최적화를 이용한 픽 커터의 절삭비에너지 예측모델)

  • Hojjati, Shahabedin;Jeong, Hoyoung;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.651-669
    • /
    • 2018
  • This study suggests the prediction model to estimate the specific energy of a pick cutter using a gene expression programming (GEP) and particle swarm optimization (PSO). Estimating the performance of mechanical excavators is of crucial importance in early design stage of tunnelling projects, and the specific energy (SE) based approach serves as a standard performance prediction procedure that is applicable to all excavation machines. The purpose of this research, is to investigate the relationship between UCS and BTS, penetration depth, cut spacing, and SE. A total of 46 full-scale linear cutting test results using pick cutters and different values of depth of cut and cut spacing on various rock types was collected from the previous study for the analysis. The Mean Squared Error (MSE) associated with the conventional Multiple Linear Regression (MLR) method is more than two times larger than the MSE generated by GEP-PSO algorithm. The $R^2$ value associated with the GEP-PSO algorithm, is about 0.13 higher than the $R^2$ associated with MLR.

A gene expression programming-based model to predict water inflow into tunnels

  • Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Laith R. Flaih;Abed Alanazi;Abdullah Alqahtani;Shtwai Alsubai;Nabil Ben Kahla;Adil Hussein Mohammed
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.65-72
    • /
    • 2024
  • Water ingress poses a common and intricate geological hazard with profound implications for tunnel construction's speed and safety. The project's success hinges significantly on the precision of estimating water inflow during excavation, a critical factor in early-stage decision-making during conception and design. This article introduces an optimized model employing the gene expression programming (GEP) approach to forecast tunnel water inflow. The GEP model was refined by developing an equation that best aligns with predictive outcomes. The equation's outputs were compared with measured data and assessed against practical scenarios to validate its potential applicability in calculating tunnel water input. The optimized GEP model excelled in forecasting tunnel water inflow, outperforming alternative machine learning algorithms like SVR, GPR, DT, and KNN. This positions the GEP model as a leading choice for accurate and superior predictions. A state-of-the-art machine learning-based graphical user interface (GUI) was innovatively crafted for predicting and visualizing tunnel water inflow. This cutting-edge tool leverages ML algorithms, marking a substantial advancement in tunneling prediction technologies, providing accuracy and accessibility in water inflow projections.

Properties of self-compacted concrete incorporating basalt fibers: Experimental study and Gene Expression Programming (GEP) analysis

  • Majeed, Samadar S.;Haido, James H.;Atrushi, Dawood Sulaiman;Al-Kamaki, Yaman;Dinkha, Youkhanna Zayia;Saadullah, Shireen T.;Tayeh, Bassam A.
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.451-463
    • /
    • 2021
  • Inorganic basalt fiber (BF) is a novel sort of commercial concrete fiber which is made with basalt rocks. Previous studies have not sufficiently handled the behavior of self-compacted concrete, at elevated temperature, containing basalt fiber. Present endeavor covers experimental work to examine the characteristics of this material at high temperature considering different fiber content and applied temperature. Different tests were carried out to measure the mechanical properties such as compressive strength (fc), modulus of elasticity (E), Poisson's ratio, splitting tensile strength (fsplit), flexural strength (fflex), and slant shear strength (fslant) of HSC and hybrid concrete. Gene expression programming (GEP) was employed to propose new constitutive relationships depending on experimental data. It was noticed from the testing records that there is no remarkable effect of BF on the Poisson's ratio and modulus of elasticity of self-compacted concrete. The flexural strength of basalt fiber self-compacted concrete was not sensitive to temperature in comparison to other mechanical properties of concrete. Fiber volume fraction of 0.25% was found to be the optimum to some extend according to degradation of strength. The proposed GEP models were in good matching with the experimental results.

GEP-based Framework for Immune-Inspired Intrusion Detection

  • Tang, Wan;Peng, Limei;Yang, Ximin;Xie, Xia;Cao, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1273-1293
    • /
    • 2010
  • Immune-inspired intrusion detection is a promising technology for network security, and well known for its diversity, adaptation, self-tolerance, etc. However, scalability and coverage are two major drawbacks of the immune-inspired intrusion detection systems (IIDSes). In this paper, we propose an IIDS framework, named GEP-IIDS, with improved basic system elements to address these two problems. First, an additional bio-inspired technique, gene expression programming (GEP), is introduced in detector (corresponding to detection rules) representation. In addition, inspired by the avidity model of immunology, new avidity/affinity functions taking the priority of attributes into account are given. Based on the above two improved elements, we also propose a novel immune algorithm that is capable of integrating two bio-inspired mechanisms (i.e., negative selection and positive selection) by using a balance factor. Finally, a pruning algorithm is given to reduce redundant detectors that consume footprint and detection time but do not contribute to improving performance. Our experimental results show the feasibility and effectiveness of our solution to handle the scalability and coverage problems of IIDS.

Proposing new models to predict pile set-up in cohesive soils

  • Sara Banaei Moghadam;Mohammadreza Khanmohammadi
    • Geomechanics and Engineering
    • /
    • v.33 no.3
    • /
    • pp.231-242
    • /
    • 2023
  • This paper represents a comparative study in which Gene Expression Programming (GEP), Group Method of Data Handling (GMDH), and multiple linear regressions (MLR) were utilized to derive new equations for the prediction of time-dependent bearing capacity of pile foundations driven in cohesive soil, technically called pile set-up. This term means that many piles which are installed in cohesive soil experience a noticeable increase in bearing capacity after a specific time. Results of researches indicate that side resistance encounters more increase than toe resistance. The main reason leading to pile setup in saturated soil has been found to be the dissipation of excess pore water pressure generated in the process of pile installation, while in unsaturated conditions aging is the major justification. In this study, a comprehensive dataset containing information about 169 test piles was obtained from literature reviews used to develop the models. to prepare the data for further developments using intelligent algorithms, Data mining techniques were performed as a fundamental stage of the study. To verify the models, the data were randomly divided into training and testing datasets. The most striking difference between this study and the previous researches is that the dataset used in this study includes different piles driven in soil with varied geotechnical characterization; therefore, the proposed equations are more generalizable. According to the evaluation criteria, GEP was found to be the most effective method to predict set-up among the other approaches developed earlier for the pertinent research.

Predicting of compressive strength of recycled aggregate concrete by genetic programming

  • Abdollahzadeh, Gholamreza;Jahani, Ehsan;Kashir, Zahra
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.155-163
    • /
    • 2016
  • This paper, proposes 20 models for predicting compressive strength of recycled aggregate concrete (RAC) containing silica fume by using gene expression programming (GEP). To construct the models, experimental data of 228 specimens produced from 61 different mixtures were collected from the literature. 80% of data sets were used in the training phase and the remained 20% in testing phase. Input variables were arranged in a format of seven input parameters including age of the specimen, cement content, water content, natural aggregates content, recycled aggregates content, silica fume content and amount of superplasticizer. The training and testing showed the models have good conformity with experimental results for predicting the compressive strength of recycled aggregate concrete containing silica fume.

A novel prediction model for post-fire elastic modulus of circular recycled aggregate concrete-filled steel tubular stub columns

  • Memarzadeh, Armin;Shahmansouri, Amir Ali;Poologanathan, Keerthan
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.309-324
    • /
    • 2022
  • The post-fire elastic stiffness and performance of concrete-filled steel tube (CFST) columns containing recycled aggregate concrete (RAC) has rarely been addressed, particularly in terms of material properties. This study was conducted with the aim of assessing the modulus of elasticity of recycled aggregate concrete-filled steel tube (RACFST) stub columns following thermal loading. The test data were employed to model and assess the elastic modulus of circular RACFST stub columns subjected to axial loading after exposure to elevated temperatures. The length/diameter ratio of the specimens was less than three to prevent the sensitivity of overall buckling for the stub columns. The gene expression programming (GEP) method was employed for the model development. The GEP model was derived based on a comprehensive experimental database of heated and non-heated RACFST stub columns that have been properly gathered from the open literature. In this study, by using specifications of 149 specimens, the variables were the steel section ratio, applied temperature, yielding strength of steel, compressive strength of plain concrete, and elastic modulus of steel tube and concrete core (RAC). Moreover, parametric and sensitivity analyses were also performed to determine the contribution of different effective parameters to the post-fire elastic modulus. Additionally, comparisons and verification of the effectiveness of the proposed model were made between the values obtained from the GEP model and the formulas proposed by different researchers. Through the analyses and comparisons of the developed model against formulas available in the literature, the acceptable accuracy of the model for predicting the post-fire modulus of elasticity of circular RACFST stub columns was seen.

Prediction of residual compressive strength of fly ash based concrete exposed to high temperature using GEP

  • Tran M. Tung;Duc-Hien Le;Olusola E. Babalola
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.111-121
    • /
    • 2023
  • The influence of material composition such as aggregate types, addition of supplementary cementitious materials as well as exposed temperature levels have significant impacts on concrete residual mechanical strength properties when exposed to elevated temperature. This study is based on data obtained from literature for fly ash blended concrete produced with natural and recycled concrete aggregates to efficiently develop prediction models for estimating its residual compressive strength after exposure to high temperatures. To achieve this, an extensive database that contains different mix proportions of fly ash blended concrete was gathered from published articles. The specific design variables considered were percentage replacement level of Recycled Concrete Aggregate (RCA) in the mix, fly ash content (FA), Water to Binder Ratio (W/B), and exposed Temperature level. Thereafter, a simplified mathematical equation for the prediction of concrete's residual compressive strength using Gene Expression Programming (GEP) was developed. The relative importance of each variable on the model outputs was also determined through global sensitivity analysis. The GEP model performance was validated using different statistical fitness formulas including R2, MSE, RMSE, RAE, and MAE in which high R2 values above 0.9 are obtained in both the training and validation phase. The low measured errors (e.g., mean square error and mean absolute error are in the range of 0.0160 - 0.0327 and 0.0912 - 0.1281 MPa, respectively) in the developed model also indicate high efficiency and accuracy of the model in predicting the residual compressive strength of fly ash blended concrete exposed to elevated temperatures.