• Title/Summary/Keyword: gelatinized starch

Search Result 103, Processing Time 0.023 seconds

Effect of Protein and Degree of Oxidation on Viscoelastic Behavior of Corn Starch Gel (산화정도와 단백질 첨가에 따른 산화 옥수수 전분 겔의 유동특성)

  • 한진숙;박귀선
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.7
    • /
    • pp.1046-1052
    • /
    • 2003
  • Viscoelastic behavior of oxidized starch gel, modified with sodium hypochlorite (NaOCl) and the adding effects of protein in oxidized starch gel was studied by dynamic viscoelastic measurement. The storage modulus(G′) of starch gel increased with the increase of starch concentration. They showed higher value when starch suspension was treated to 95$^{\circ}C$ rather than 85$^{\circ}C$. Consistency of starch gel was decreased over 1.0% active Cl/g starch when heated to 95$^{\circ}C$, which means that the swelling of starch granules increased with concentration of NaOCl and showed more sensitive against shear. As the extent of oxidation increased, starch granules were easily destroyed. Therefore, it is hard to separate between compartment of leached-out amylose and that of amylopectin, which means that the ability of gel formation was reduced. When oxidized starches were gelatinized in presence of soy protein and sodium caseinate, it was found that G′ decreased, and frequency dependence of G′ and G" increased with the increased degree of oxidation in starch. The reduce of starch-protein interaction was thought to be through the dissociation of the branched amylopectin, which playa leading role in protein interaction, with the oxidation of starch.

Modification of Starch using Dextransucrase and Characterization of the Modified Starch. (덱스트란수크라제를 이용한 전분의 변형 및 특성 조사)

  • ;;;;;John E. Robyt
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.2
    • /
    • pp.143-150
    • /
    • 1998
  • Many enzymes catalyze a primary reaction and/or secondary reaction. Dextransucrase usually synthesize dextran from sucrose as a primary reaction. The secondary reaction of dextransucrase is the transfer of glucose from sucrose to carbohydrate accepters. We have reacted dextransucrase from Leuconostoc mesenteroides B-742CB with sucrose and starches; granule or gelatinized starches, and Small or Potato starches. The yield of modified starch was ranged from 46% to 72%(s.d.<${pm}$5%) of theoretical depends on various reaction conditions. Modified products were more resistant against the hydrolysis of ${alpha}$-amylase, isoamylase, pullulanase and endo-dextranase than those of native starch. Based on the reactions from enzyme hydrolysis and methylation followed by acid hydrolysis modification of granule starch was more efficient than the modification of gelatinized starch. After modification of granule starch with dextransucrase, there produced a soluble modified starch. After modification the starch granules were fractionated to small size. The positions of glucose substitution of the modified products were determined by methylation followed by acid hydrolysis and analyzed by TLC. The products were modified by the addition of glucose to the position of C3, C4 and C6 free hydroxyl group of glucose residues in the starch.

  • PDF

Effects of High Pressure Homogenization on Physicochemical Properties of Starch Films (고압균질처리가 전분필름의 물성에 미치는 영향)

  • Kang, Eun-Jung;Lee, Jae-Kwon
    • Food Engineering Progress
    • /
    • v.15 no.1
    • /
    • pp.70-74
    • /
    • 2011
  • The effects of high pressure homogenization (microfluidization) on physicochemical properties of normal maize and oxidized maize starch film were studied. The molecular dispersibility of amlyose and amylopectin and the disintegration of granular structure had a marked effect on the physicochemical properties of starch films. The high pressure homogenized starch films showed increased solubility and transmittance due to the absence of gelatinized starch granules. The tensile strength of starch film increased significantly with decreasing oxygen permeability after high pressure homogenization, indicating that starch molecules were more uniformly and fully dispersed during the film formation. As a result, a clear starch film with improved mechanical properties was obtained after high pressure homogenization due to the increased interactions between the uniformly dispersed starch molecules.

Bifidobacterium adolescentis P2P3, a Human Gut Bacterium Having Strong Non-Gelatinized Resistant Starch-Degrading Activity

  • Jung, Dong-Hyun;Kim, Ga-Young;Kim, In-Young;Seo, Dong-Ho;Nam, Young-Do;Kang, Hee;Song, Youngju;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1904-1915
    • /
    • 2019
  • Resistant starch (RS) is metabolized by gut microbiota and involved in the production of short-chain fatty acids, which are related to a variety of physiological and health effects. Therefore, the availability of RS as a prebiotic is a topic of interest, and research on gut bacteria that can decompose RS is also important. The objectives in this study were 1) to isolate a human gut bacterium having strong degradation activity on non-gelatinized RS, 2) to characterize its RS-degrading characteristics, and 3) to investigate its probiotic effects, including a growth stimulation effect on other gut bacteria and an immunomodulatory effect. Bifidobacterium adolescentis P2P3 showing very strong RS granule utilization activity was isolated. It can attach to RS granules and form them into clusters. It also utilizes high-amylose corn starch granules up to 63.3%, and efficiently decomposes other various types of commercial RS without gelatinization. In a coculture experiment, Bacteroides thetaiotaomicron ATCC 29148, isolated from human feces, was able to grow using carbon sources generated from RS granules by B. adolescentis P2P3. In addition, B. adolescentis P2P3 demonstrated the ability to stimulate secretion of Th1 type cytokines from mouse macrophages in vitro that was not shown in other B. adolescentis. These results suggested that B. adolescentis P2P3 is a useful probiotic candidate, having immunomodulatory activity as well as the ability to feed other gut bacteria using RS as a prebiotic.

Effect of Rice Lipid and Protein on Rheological Characteristics of Gelatinized Rice Flour Solutions (쌀의 지방과 단백질이 쌀가루 호화액의 리올리지 특성에 미치는 영향)

  • 이영순;김인호;김현정;이상효;이현유;박광희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.6
    • /
    • pp.1293-1297
    • /
    • 1999
  • Effect of rice protein and lipid on rheological properties of gelatinized rice flour solutions(4%) with three rice varieties(Dongjin, Jinmi, Tamjin) known for varying taste of cooked rice was investigated with Haake viscometer. The rheological behaviors of all rice flour solutions were illustrated by Herschel Bulkley equation and exhibited pseudoplastic behavior with yield stress. When rice flour solutions treated with protease and dithiothreitol, there was decreased in flow behavior index value. Flow behavior index was decreased by dealbumin and deglutelin rice flour solutions among deprotein groups. The Jinmi rice flour solutions exhibited slightly lower consistency index than Dongjin and Tamjin. Defatted rice flour solutions exhibited lower consistency index than rice flour solutions, while dealbumin, deglutelin rice flour solutions exhibited high consistency index. Protease treated rice flour solutions exhibited increase in Dongjin and Tamjin. The yield stress was increased in sequence eating quality. Yield stress of defatted rice flour solutions was decreased, while deglutelin and rice starch flour solutions was increased. The time dependent charac teristics of all rice flour solutions appeared forming hysteresis loop and thixotropic behavior showed. The time dependent characteristics was appeared in sequence eating quality. Rice starch and deglutelin flour solutions appeared greatly time dependent characteristics, but defatted rice flour solutions appeared very little.

  • PDF

Rheological Characteristics of Thermal Gelatinized Corn Starch Solution (옥수수 전분 호화액의 리올로지 특성)

  • Kim, Ju-Bong;Lee, Shin-Young;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.54-58
    • /
    • 1992
  • The reological properties of commercial corn starch solutions at various concentrations($4{\sim}9%$) and temperatures($30{\sim}60^{\circ}C$) were investigated. The rheological behavior of corn starch solutions was illustrated by Herschel-Bulkley equation and exhibited pseudoplastic behavior with yield stress. The degree of pseudoplasticity of starch solution increased as the starch concentration increased but was independent on temperature. Apparent viscosity and yield stress of starch solutions were exponentially dependent on concentration and temperature. The critical concentrations for sol-gel transition and for the onset of close-packing of the starch granules were $6.22{\sim}6.52%\;and\;2.68{\sim}2.78%$ respectively.

  • PDF

Effects of Amylose Contents and Degree of Gelatinization of Rice Flour on In Vitro Starch Digestibility, Physical Characteristics, and Morphological Properties

  • Park, Ji Eun;Bae, In Young;Oh, Im Kyung;Lee, Hyeon Gyu
    • Food Engineering Progress
    • /
    • v.21 no.4
    • /
    • pp.341-350
    • /
    • 2017
  • The relationship of in vitro starch digestibility and gel strength was investigated at various concentrations (10-30%) of rice cultivars with different amylose contents (27.9, 17.9, and 5.2%). As the rice flour concentration increased, predicted glycemic index decreased, but gel strength increased regardless of amylose contents. Gel strength correlated strongly with amylose content, whereas in vitro starch digestibility was more highly affected by rice flour concentration than by amylose contents. Moreover, the impact of degree of gelatinization on in vitro starch digestibility of high amylose rice was also examined in terms of structural features and rheological properties. The digestion rate of fully gelatinized flour was 1.7 times higher than that of native flour, while the disrupted structure with a different gelatinization degree during starch digestion was visually demonstrated through the X-ray diffraction and molecular distribution analysis. The rice flour changed from an A-type to a V-type pattern and showed difference in crystalline melting. The low molecular weight distribution increased with increasing degree of gelatinization during starch digestion. The apparent viscosity also increased with degree of gelatinization. These results demonstrated that the starch digestibility of rice was more affected by concentration than by amylose content, as well as by the degree of gelatinization due to structural difference.

Viscometric Properties of Waxy Rice Starches (일반계 및 다수계 찹쌀 전분의 점성 특성)

  • Song, Bum-Ho;Kim, Sung-Kon;Lee, Kyu-Han;Pyun, Yu-Ryang;Lee, Shin-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.107-112
    • /
    • 1985
  • Viscometric properties of japonica(Olchal) and japonica${\times}$indica(Hankang and Suwon 317) waxy rice starches were investigated. Light transmittance of starch suspension increased from $50^{\circ}{\sim}55^{\circ}C$ and remained constant after $75^{\circ}C$. Swelling power was in the order of Hankang, Suwon 317 and Olchal. Amylograph data revealed that Hankang had the highest viscosity at all reference points. The apparent viscosity of 5% starch suspension indicated that the j${\times}$indica starches were completely gelatinized after 30 min cooking at $65^{\circ}C$ whereas japonica starch at $70^{\circ}C$. The apparent viscosity of gelatinized starch at $121^{\circ}C$(15 psig) was higher compared to that of gelatinized one at $95^{\circ}C$. Hankang was the most susceptable to alkali gelatinization followed by Suwon 317 and Olchal.

  • PDF

Gelatinization Properties of Heat-Moisture Treated Potato and Sweetpotato Starches (수분 열처리한 감자 및 고구마전분의 호화 특성)

  • Kim, Sung-Kon;Lee, Shin-Young;Park, Yong-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.435-440
    • /
    • 1987
  • Gelatinization properties of heat-mositure treated potato and sweet potato starches were investigated. Water-binding capacity of starch was increased by heat-mositure treatment, which was more pronounced in sweet potato starch. Blue value was not affected by the treatment. Amylograph viscosities were decreased by heat-mositure treatment, which was more pronounced in potato starch. Critical concentration of NaOH for gelatinization of starch increased as moisture level increased. Gel volume of starch upon KSCN gelatinization was higher in potato starch. Gelatinized starches showed Binghamapseudoplastic behavior. Consistency index and yield stress were drastically decreased upon heat-moisture treatment.

  • PDF

Evaluation of Molecular Weight Distribution, Pasting and Functional Properties, and Enzyme Resistant Starch Content of Acid-modified Corn Starches

  • Koksel, Hamit;Ozturk, Serpil;Kahraman, Kevser;Basman, Arzu;Ozbas, Ozen Ozboy;Ryu, Gi-Hyung
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.755-760
    • /
    • 2008
  • The aim of this study was to produce resistant starch preparations from acid-modified com starches prepared at various hydrolysis levels (0.5-4.0 hr). Effect of autoclaving cycles on resistant starch (RS) formation was investigated. Molecular weight distribution, pasting and functional properties of acid-modified com starches were determined. For RS formation native and acid-modified starch samples were gelatinized and autoclaved (1 or 2 cycles). While native and acid-modified starches did not contain any RS, the levels increased to 9.0-13.5% as a result of storage at $95^{\circ}C$ after first autoclaving cycle. Second autoclaving cycle together with storage at $95^{\circ}C$ brought final RS contents of the samples incubated at 4 and $95^{\circ}C$ after the first cycle to comparable level. As acid modification level increased, the amount of high molecular weight fractions decreased, resulting in significant decreases in viscosities (p<0.05). The samples produced in this study had low emulsion stability and capacity values.