• 제목/요약/키워드: gelatinization temperatures

Search Result 86, Processing Time 0.034 seconds

Effects of Particle Size and Gelatinization of Job's Tears Powder on the Instant Properties

  • Han, Sung-Hee;Park, Soo-Jea;Lee, Seog-Won;Rhee, Chul
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.1
    • /
    • pp.67-73
    • /
    • 2010
  • The effects of particle sizes (small, medium and large sizes) and gelatinization treatment on the changes of the instant properties of Job's tears powder were investigated. The degree of gelatinization on the different particle size samples of Job's tears powder was the highest in the small particle size, and it also showed an increasing trend regardless of pregelatinizing whether it is or not as the particle size decreased from large particle size to small particle size. The water solubility index of the pregelatinized samples was high compared to that of ungelatinized samples regardless of particle size and temperatures. The water absorption and swelling power increased as particle size and temperature were increased. The dispersibility and sinkability of ungelatinized sample was increased as particle size and temperature were increased and it also showed lower value regardless of particle size and temperature. However, the dispersibility and sinkability of pregelatinized samples were shown to have the opposite result, such that the smallest particle size of pregelatinized sample had the lowest sinkability (11.3%). The turbidity of the pregelatinized small particle size was the highest by a factor of 1.08.

Rheological Properties of Gelatinization of Rice Starch (쌀 전분 호화중의 리올로지 특성)

  • Lee, Shin-Young;Cho, Hyung-Yong;Kim, Sung-Kon;Lee, Sang-Kyu;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.273-278
    • /
    • 1984
  • Changes in rheological properties of rice starch-water systems during the gelatinization were evaluated with the tube viscometer at temperatures between 50 and $85^{\circ}C$ and for the concentrations ranging from 3-5% rice starch. The flow consistency index increased exponentially with time at a particular temperature while being linearly dependent upon the concentration. The gelatinization rate measured by rheological method followed Arrhenius type equation. The value of activation energy of gelatinization for 5% rice starch was about 25 kcal/g mol.

  • PDF

Effects of Rice Bran Dietary Fiber Extract on Gelatinization and Retrogradation of Wheat Flour (미강 식이섬유 추출물이 밀가루의 호화 및 노화에 미치는 영향)

  • Kim, Young-Soo;Ha, Tae-Youl;Lee, Sang-Hyo;Lee, Hyun-Yu
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.464-469
    • /
    • 1997
  • Rapid visco-analyzer (RVA) and differential scanning calorimetry (DSC) were used to study the effect of rice bran dietary fiber extract on gelatinization and retrogradation of wheat flour. The addition of rice bran dietary fiber extracts from various heat treated bran into wheat flour caused to increase the pasting temperature, peak viscosity and final viscosity of RVA measurements. For gelatinization measured with DSC, mixtures of wheat flour and rice bran dietary fiber extract had slightly higher To (onset temperature) and Tp (peak temperature) values than those of control (wheat flour), and wheat flour/defatted rice bran dietary fiber extract mixture had the lowest enthalpy value. In comparison with gelatinization, the retrogradation endotherm of mixtures stored at $4^{\circ}C$ up to 4 weeks occurred at about $20^{\circ}C$ lower temperatures than gelatinization endotherm with broader shape and well-defined thermograms with storage time. The retrogradation of wheat flour was retarded greatly by addition of rice bran dietary fiber extract, and there was no big difference between 5% and 10% additions.

  • PDF

Effects of storage temperatures on the physicochemical properties of milled rice (백미의 저장온도에 따른 이화학적 성질의 변화)

  • Kim, Sung-Kon;Cho, Eun-Ja
    • Applied Biological Chemistry
    • /
    • v.36 no.3
    • /
    • pp.146-153
    • /
    • 1993
  • The changes in water uptake rate, cooking property, color of rice grain, gelatinization property of milled rice during storage were studied. The water uptake rate constant of milled rice during storage at $4{\sim}30^{\circ}C$ for 3 months decreased, which was more pronounced at elevated storage temperatures. The activation energy of water uptake was different below and above $25^{\circ}C$ of storage temperature. The activation energy after storage for 3 months below and above $25^{\circ}C$ was 608 and 1269 cal/mole, respectively. The rice grain became harder and the cooking time was prolonged by $3{\sim}8$ minutes upon storage. The cooking rate constant was linearly decreased as a function of storage time. The activation energy of cooking after 1 month of storage was 235 cal/mole, which was increased by 1.7 times after storage of 1.5 months and thereafter by 1.2 times with the increase of 0.5 month. There were no significant changes in color of milled rice grains during storage at $4^{\circ}C$, but the increase of b value was observed at higher temperatures. The Initial pasting temperature of rice flour remained essentially unchanged during storage, but the peak viscosity consistently increased with the increase of storage time and temperature. The gelatinization temperature of rice flour by differential scanning calorimetry was not changed but enthalpy of gelatinization was decreased during storage.

  • PDF

Correlation of morphological changes of rice starch granules with rheological properties during heating In excess water (가열 조리시 쌀 전분 입자들의 형태학적 변화와 리올로지 특성과의 관계)

  • Lee, Young-Eun;Osman, Elizabeth M.
    • Applied Biological Chemistry
    • /
    • v.34 no.4
    • /
    • pp.379-385
    • /
    • 1991
  • Morphological changes of starch granules from 12 different varieties of rice were examined by scanning electron microscopy during heating at 2.5% (w/v) concentration. Rice starch granules proceeded through a similar pattern of progressive morphological changes daring heating, regardless of variety. Rice starch granules began to swell radially in the initial stage of gelatinization and then undergo radial contraction and random tangential expansion to form complex structures in the latter stage of gelatinization temperature range. At higher temperatures, starch granules softened and melted into thin flat discs, and then stretched into thin filaments to form three-dimensional networks. These progressive morphological changes were reflected in the changes of swelling power, solubility and amylograph viscosity of starch. During the transition of melting or softening, swelling power, solubility and amylograph viscosity increased rapidly. The time of loss of granular structure of starch depended on gelatinization temperature range. The ratio of amylose to amylopectin was largely responsible fur the rate of melting or softening and the fineness of a three-dimensional filamentous network above the gelatinization temperature range. Therefore, both the gelatinization temperature range and amylose content of starch affect the rate of cooking, and amylose content of starch affects the final texture of cooked starch paste.

  • PDF

Comparison of Some Properties of Naked Barley Starches (쌀 보리 전분의 성질비교)

  • Kim, Oh-Mok;Kim, Kwan;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.33-36
    • /
    • 1985
  • Some properties of starches from three naked barley cultivars(Songhak, Youngsan and Jinan 56) were compared. No significant differences in water-binding capacity, amylose content, relative crystallinity, swelling power and gelatinization degree at various pasting temperatures among cultivars were observed. However, starches showed characteristic viscograph indices and viscosity development patterns in aqueous sodium hydroxide solution. Songhak starch exhibited the lowest pasting temperature and was the most resist to alkali gelatinization.

  • PDF

Effect of Low Level of Starch Acetylation on Physicochemical Properties of Potato Starch

  • Wickramasinghe, Hetti Arachchige Mangalika;Yamamoto, Kazuo;Yamauchi, Hiroaki;Noda, Takahiro
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.118-123
    • /
    • 2009
  • In order to find out the effect of low level of starch acetylation on physicochemical properties of potato starch, amylose content, digestibility of raw and gelatinized starch, thermal properties, pasting properties, and the swelling power of native and acetylated potato starches were measured. The amylose content was significantly lower in acetylated starch than in their counterpart native starches. Though a tendency in the decrease in digestibility of raw starch was observed with starch acetylation, acetylation did not alter the proportion of readily digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) of both raw and gelatinized potato starches. No clear increase in the swelling power was observed, however, the peak and onset gelatinization temperatures and the enthalpy required for starch gelatinization decreased with starch acetylation. Peak and breakdown viscosities were reduced due to acetylation of potato starch while final viscosity and set back were increased.

Gelatinization Properties of Starch Dough with Moisture Content, Heating Temperature and Heating Time (수분함량, 가열온도 및 가열시간에 따른 전분 반죽의 호화특성)

  • Lee, Boo-Yong;Lee, Chang-Ho;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.428-438
    • /
    • 1995
  • The gelatinization properties of corn and waxy corn starch doughs were examined at various moisture contents, heating temperatures and heating times. The onset temperatures of gelatinization with 1% CMC using Brabender Amylograph were $64^{\circ}C$ for both corn and waxy corn starch. In the gelatinization properties using DSC, onset temperature$(T_o)$, maximum peak temperature$(T_p)$, completion temperature$(T_c)$ and enthalpy of the corn starch were $68.15^{\circ}C,\;74.01^{\circ}C,\;85.65^{\circ}C$ and $3.2\;cal/gram$ respectively. While those of the waxy corn starch were $68.24^{\circ}C,\;75.43^{\circ}C,\;93^{\circ}C$ and $4.2\;cal/gram$ respectively. In enzymatic analysis, when the moisture content increased from 36% to 52% and heating temperature from $60^{\circ}C$ to $100^{\circ}C$, the gelatinization degree of starch dough increased from about 10% to about 62%. The gelatinization degree of waxy corn starch dough was $15{\sim}20%$ higher than that of corn starch dough under the same gelatinization conditions. The regression equations of gelatinization degree (Y) of starch dough in the range of $36{\sim}52%$ moisture content $(X_1)\;60{\sim}100^{\circ}C$ heating temperature $(X_2)\;and\;0{\sim}2.0$ min heating time $(X_3)$ were examined using response surface analysis. The regression equation of corn starch dough was: $Y=28.659+8.638\;X_}+15.675\;X_2+7.770\;X_3-1.620\;{X_1}^2+10.790\;X_1X_2-4.220\;{X_2}^2+0.510\;X_1X_3+1.980\;X_2X_3-6.850\;{X_3}^2\;(R^2=0.9714)$ and that of waxy corn starch dough was: $Y=32.617+12.535\;X_1+20.470\;X_2+8.608\;X_3+4.093\;{X_1}^2+13.550\;X_1X_2-4.467\;{X_2}^2+1.560\;X_1X_3+2.160\;X_2X_3-9.527\;{X_3}^2$\;(R^2=0.9621)$. As the moisture content, heating temperature and heating time increased, the reaction rate constant(k) of gelatinization increased. The greatest reaction rate constant was observed at initial 0.5 min heating time of 1st gelatinization stage. At the heating temperature of $90^{\circ}C$, gelatinization of starch dough was completed almost in the initial 0.5 min heating time. The reaction rate constant of waxy corn starch dough was higher than that of corn starch dough under the same gelatinization conditions. At the 52% moisture content, the regression equation between reaction rate constant(k) and heating temperature(T) for corn starch dough was $log\;k=11.1140-4.1226{\times}10^3(1/T)$ (r=-0.9520) and that of waxy corn starch dough was $log\;k=10.1195-3.7090{\times}10^3(1/T)$ (r=-0.9064).

  • PDF

Effect of Ohmic Heating at Subgelatinization Temperatures on Thermal-property of Potato Starch (호화점 이하에서 옴가열이 감자 전분의 열적특성에 미치는 영향)

  • Cha, Yun-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.4
    • /
    • pp.1068-1074
    • /
    • 2012
  • Ohmic heating uses electric resistance heat which occurs equally and rapidly inside of food when electrical current is flown into. In other study, we researched about soybean protein's characteristic changes by ohmic heating. Nevertheless treated same temperature, denaturation of soybean protein were accelerated by ohmic heating than conventional heating. In this time, we studied thermal property change of potato starch by ohmic heating besides conventional heating. For this purpose, potato starch was heated at same subgelatinization temperature by ohmic and conventional heating. And thermal properties were tested using DSC. Annealing of starch is heat treatment method that heated at 3~4% below the gelatinization point. DSC analysis results of this study, the $T_o$, $T_p$, $T_c$ of potato starch levels were increased, whereas $T_c{\sim}T_o$ was narrowed. This thermal property changes appear similar to annealing's result. It is thought the results shown in this study, because the heating from below the gelatinization point. 6, 12, 24, 72, and 120 hours heating at $55^{\circ}C$ for potato starch, $T_o$, $T_p$, $T_c$ values continue to increased with heating time increase. The gelatinization temperature of raw potato starch was $65.9^{\circ}C$ and the treated starch by conventional heating at $55^{\circ}C$ for 120 hr was $72^{\circ}C$, ohmic was $76^{\circ}C$. The gelatinization range of conventional (72 hr) was $10^{\circ}C$, ohmic was $8^{\circ}C$. In case of 24 hours heating at 45, 50, 55, 60, $65^{\circ}C$ for potato starch, the result was similar to before. $T_o$, $T_p$, $T_c$ values continue to increased and gelatinization range narrowed with heating temperature increase. In case of conventional heating at $60^{\circ}C$, the results of gelatinization temperature and range were $70.1^{\circ}C$ and $9.1^{\circ}C$. And ohmic were $74.4^{\circ}C$ and $7.5^{\circ}C$. When viewed through the results of the above, the internal structure of starch heated by ohmic heating was found that the shift to a more stable form and to increase the homology of the starch internal structure.

Physico-Chemical Properties of Starches from Atlantic and Bora Valley Potato Cultivar with Different Colors (색깔이 다른 대서와 보라밸리 감자 전분의 이화학적 특성)

  • Lee, Jae-Soon;Choi, Mi-Kyeong;Moon, Eun-Young;Kang, Myung-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.4
    • /
    • pp.542-547
    • /
    • 2010
  • Physico-chemical properties of starches from potato cultivars with different colors were investigated. White Atlantic potato had 10% higher starch yield than violet Bora Valley potato. It turned out that the shape and structure of Atlantic and Bora Valley potato starch were the same by mechanical analysis using X-ray and SEM. The ratio of $50\;{\mu}m$ particle in starches from Atlantic and Bora Valley potato was $45.44\pm2.79%$ and $42.37\pm1.03%$ respectively. The particle size of Atlantic potato starch was less than that of Bora Valley; however, there was no significant difference (p<0.05). As for moisture coupling, there was no difference (p<0.05) between the two potatoes. Swelling power showed a high increase from $65^{\circ}C$ to $80^{\circ}C$. The swelling power of Atlantic starch was higher by about 0.3% than that of Bora Valley at $90^{\circ}C$. Since Atlantic has smaller starch particles than Bora Valley, more starch particles are contained in the same size, and hence a difference in swelling power. As a result of measuring the gelatinization of potato starches from Atlantic and Bora Valley, a higher gelatinization start, climax, and complete temperatures occurred at Bora Valley than Atlantic. As for gelatinization enthalpy, Bora Valley starch with a higher gelatinization temperature consumed more energy for gelatinization.