• Title/Summary/Keyword: gelatinization properties

Search Result 444, Processing Time 0.027 seconds

Physicochemical Properties of Hydroxypropylated Rice Starches (하이드록시프로필화 쌀 전분의 이화학적 특성)

  • Choi, Hyun-Wook;Koo, Hye-Jin;Kim, Chong-Tai;Hwang, Seong-Yun;Kim, Dong-Seob;Choi, Sung-Won;Hur, Nam-Youn;Baik, Moo-Yeol
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.44-49
    • /
    • 2005
  • Physicochemical properties of hydroxypropylated rice starches were investigated. Swelling power of hydroxypropylated rice starch increased at relatively lower temperature than native rice starch. Solubility of hydroxypropylated rice starch was lower (1.9-13.4%) than that of native rice starch (2.2-13.8%), and increased with increasing amount of propylene oxide. Pasting temperature ($66.2-70.8^{\circ}C$) and peak viscosity (2,843-3,395cp) of hydroxypropylated rice starch were lower than those of native starch ($71.6^{\circ}C,\;3,976\;cp$) and decreased with increasing amount of propylene oxide, regardless of reaction time. DSC thermal transitions of hydroxypropylated rice starches shifted toward lower temperature. Amylopectin-melting enthalpy of hydroxypropylated rice starch decreased (11.8-9.8J/g) with increasing amount of propylene oxide and was lower than that of native starch (11.9 J/g). These results indicate hydroxypropylation lowered swelling power and gelatinization temperatures of rice starch, because internal bonds of rice starch molecules were sterically weaken by substituted hydroxypropyl groups.

Production of Starch Vermicelli (Dangmyun) by Using Modified Corn Starches (I) -Physicochemical Properties of Domestic and Foreign Starch vermicelli (Dangmyun)- (변성 옥수수 전분을 이용한 당면제조 (I) -국내외 시판당면의 이화학적 특성-)

  • Yook, Cheol;Lee, Won-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.60-65
    • /
    • 2001
  • Physicochemical properties of 4 kinds of domestic and 7 kinds of foreign starch vermicelli (1 from Chinese, 6 from Japan) were determined. Peak temperature of starch vermicelli measured by DSC were $42{\sim}48^{\circ}C$ which were much lower than gelatinization temperatures of their raw material starches. X-ray diffraction peaks of starch vermicelli were not sharp compared with those of raw material starches which indicated that starches were gelatinized by heating and retrograded by cooling and freezing during production of starch vermicelli. Hardness and compression slope of sweet potato starch vermicelli measured by rheometer were respectively $9,500{\sim}11,000\;g/cm^2$ and $18,000{\sim}26,000\;g/cm^2$ which were twice higher than those of corn starch vermicelli. Cooking loss of corn starch vermicelli, which was 19.8%, was higher than that of sweet potato starch vermicelli, $4.2{\sim}6.6%$ and mung bean starch vermicelli, 7.7%. In changes of thickness of starch vermicelli during cooking i.e swelling ratio, sweet potato starch vermicelli had $58{\sim}69%$ of swelling ratio, which was higher than that of corn starch vermicelli, 50%. Corn starch vermicelli, which was relatively less elastic and easily broken, was shown to be inferior to that of sweet potato starch vermicelli in overall quality.

  • PDF

Effects of Enzyme Treatment in Steeping Process on Physicochemical Properties of Wet-Milled Rice Flour (효소 전처리에 의한 습식제분 쌀가루의 이화학적 특성)

  • Kim, Rae-Young;Park, Jae-Hee;Kim, Chang-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.9
    • /
    • pp.1300-1306
    • /
    • 2011
  • This study investigated the physicochemical characteristics of wet-milled rice flour treated with pectinase and cellulase in a steeping process. Enzyme treatments were used as follows: pectinase 0.05%, cellulase 0.05%, and mixed enzyme treatments 0.05~0.2%. For particle distribution, rice flour E-treated with mixed enzymes (pectinase 0.05% and cellulase 0.05%) was the finest at 48.3% particle distribution less than $53\;{\mu}m$. Protein contents and damaged starch were reduced by enzyme treatments. Damaged starch was the lowest (12.1%) in rice flour E compared with non-enzyme treatment (18.1%). Amylose content, water binding capacity, solubility, and swelling power all increased upon enzyme treatments, and their effects increased upon mixed enzyme treatment. For gelatinization characteristics of RVA, peak viscosity, final viscosity, breakdown, and total setback viscosity increased in rice flours treated with mixed enzymes. Especially, in steeping method with mixed enzyme treatment, pectinase 0.05% and cellulase 0.05% treatment was suitable for minimizing damaged starch and high fine particle distribution of rice flours compared with single enzyme treatment.

Quality Characteristics of Wheat Flours from New Released Iksan370 with Long Spike and Domestic Wheat Cultivars (신육성 다수확 밀 익산370호의 원맥과 밀가루의 품질 특성)

  • Choi, Yong-Seok;Lee, Jae-Kang;Choi, Yong-Hyun;Kim, Young-Hwan;Kang, Chon-Sik;Shin, Malsik
    • Korean journal of food and cookery science
    • /
    • v.31 no.5
    • /
    • pp.551-556
    • /
    • 2015
  • Iksan370 is a long-spike wheat developed by the Rural Development Administration yielding excellent features components such as cold resistance, disease resistance, and viviparous germination. The physicochemical and material properties of the raw wheat and milled flour of Iksan370 were analyzed to derive its appropriate uses. The raw wheat of Iksan370 showed high contents of ash and proteins at 1.71% and 13.7%, respectively. Its test weight of 763.0 g/L was similar to those of other varieties and its 1,000 kernel weight was high at 45.38 g. The milled flour of Iksan370 had an ash content of 0.45%, which corresponds with a class 1 flour, and its protein content is 12.18%, corresponding with strong flour. The damaged starch was 5.41%, which was lower than that of other varieties. The average grain size was $70.67{\mu}m$ and the grain distribution was at the level of a typical hard wheat. In the farinogram, the water absorption was 58.63%, which corresponded to the level of medium flour. The development time was 7.00 minutes, which was significantly lower than those of Jokyung and Keumkang. The degree of softening was 67.00 BU, similar to those of Yunbaek and Baekjoong. Among the physico-chemical characteristics, the high protein content and typical hard wheat grain distribution of Iksan370 were similar to those of strong wheat, usually used for bread making. However, in the farinogram, the dough development time was short and the degree of softening was high. As a result, Iksan370 was expected to have poor breadmaking properties and a small volume of the final bread product due to insufficient dough durability. On the other hand, Iksan370 showed the highest maximum gelatinization viscosity at 864.00 BU. Therefore, Iksan370 is expected to show glutinous texture when used for noodles and its flour appears to be appropriate for frying powders as well.

Physical Properties of Dough with Bamboo Leaf Powder (죽엽 분말을 첨가한 반죽의 물리적 특성)

  • Hwang, Su-Jung
    • Food Science and Preservation
    • /
    • v.18 no.4
    • /
    • pp.517-526
    • /
    • 2011
  • The physical properties of dough with different levels (2, 4, 6, and 8%) of bamboo leaf powder were inverstigated. The bamboo leaf powder had a moisture content of 5.15%, a crude protein content of 10.48%, a crude fat content of 5.21%, a crude fiber content of 22.74%, and a crude ash content of 17.63%. The following parameters showed significant differences with the increase in the amount of bamboo leaf powder added. The gelatinization degree measured by a rapid visco-analyzer increased with the increase in the powder amount added. In the values of the farinogram parameter for dough consistency, the elasticity of the dough increased with the increase in the powder amount added. The alveogram values showed a similar tendency as those of the farinogram in terms of elasticity, absorption rate, absorption time and stability. In the rheofermentometer analysis, the volume decreased with the increase in the powder amount added, but no significant difference was found at up to 4% powder amount addition, suggesting that the about 2% and up to 4% powder amount addition is moderate.

Comparison of Some Characteristics Relevant to Rice Bread made from Eight Varieties of Endosperm Mutants between Brown and Milled Rice (8품종 변이체 벼의 현미 및 백미빵 가공성 비교)

  • Kang, Mi-Young;Koh, Hee-Jong;Han, Ji-Yeun
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.82-89
    • /
    • 2000
  • Relationship among the properties of rice, such as amylose contents of endosperm starch, sugar content and amylogram characteristics, and processing properties for rice bread was studied. The amylose content of the rice cultivars decreased in order of Nampungbyeo, Whachungbyeo>Punchilmi(fl)>Nampung CB243> Whachung du-I, Nampung EM90>Whachung-chalbyeo>shr. Protein contents of rice tested in this study were almost same level, however, shr, the high sugar rice, showed the highest protein content scored as 8.2%. The study showed that the amylose contents of rice cultivars were negatively correlated with their protein contents. The starting temperatures for gelatinization of the flour of Punchilmi(fl) and Shurunken(shr) were low, however, in case of Whachungbyeo and Nampungbyeo plus their mutants derived from the both, the stickiness and the hardness of the flours were shown to be positively correlated with the amylose contents. In addition, loaf volume tested using sensory evaluation and overall quality showed the same tendency. Among the rice cultivars tested in this study, breads made from white rice had good qualities in bread making process than those made from brown rice. The bread made from Nampungbyeo was demonstrated to have highest score e in overall quality, as well as the lowest retrogradation index during storage at $4^{\circ}C$

  • PDF

Effect of Silkpeptide on Physicochemical Properties of Bread Dough (실크펩티드 첨가한 빵반죽의 이화학적 특성)

  • Kim, Young-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.246-254
    • /
    • 2004
  • Physicochemical properties of bread dough added with silkpeptide were investigated. Protein content of silkpeptide was 90.83%. In amino acid analysis, glycine content was highest at 18,760.04 mg%. Alanine, serine, and tyrosine contents were much higher in silkpeptide flour than wheat flour. Mixed silkpeptide showed low lightness and redness values and high yellowness. Farinograph water absorption decreased as silkpeptide content increased. Both arrival and development times of silkpeptide-added dough were longer than those of wheat flour, As silkpeptide content increased, degree of weakness increased, Maximum viscosity of amylograph decreased gradually with addition of silkpeptide, while gelatinization temperature was not affected. Extensograph showed extensibility and resistance to extension of dough increased, while ratio of resistence to extensibility highly increased with increasing amount of silkpeptide. Silkpeptide added to bread dough showed oxidation effect, indication that it could be used as natural additive for improving bread dough quality.

Effects of Mulberry Leaf Powder on Physicochemical Properties of Bread Dough (뽕잎분말 첨가가 빵반죽의 이화학적 특성에 미치는 영향)

  • Kim, Young-Ho;Cho, Nam-Ji
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.705-713
    • /
    • 2010
  • This study was carried out to investigate the physicochemical properties of bread dough with added mulberry leaf powder. The crude protein, fiber and ash contents of the mulberry leaf powder were 21.25%, 7.70% and 9.27% respectively. The mulberry leaf-mixed powder showed low lightness and redness values and high yellowness. Farinograph water absorption increased as the mulberry leaf powder content increased. Both arrival and development times of the mulberry leaf powder-added dough were longer than those of wheat flour dough. As the mulberry leaf powder content increased, the degree of weakness increased. Maximum viscosity by amylograph analysis increased gradually with the addition of mulberry leaf powder, while gelatinization temperature was not affected. Degree of extension decreased as shown in extensograph analysis with increasing content of mulberry leaf powder.

Quality Characteristics of Gangjung Made of Different Varieties of Waxy Rice (찹쌀 품종별 강정 제조 특성)

  • Kim, Kyung-Mi;Lee, Ji-Hyun;Kim, Haeng-Ran
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.175-182
    • /
    • 2010
  • Differences in physiochemical characteristics of row waxy rice, steeped in optimum steeping conditions ($31.5^{\circ}C$, 9 days) were investigated along with the relationship between these properties and the quality characteristics of Gangjung made from ten different varieties of waxy rice in order to identify the optimal waxy rice variety for making Gangjung. The moisture content of ten waxy rice varieties was increased, but protein and ash contents were decreased during steeping. Mineral analysis, showed that the Fe, Mg, Ca, Na and K contents of all samples were decreased during steeping. Regarding the gelatinization behavior of the ten waxy rice varieties, the peak viscosity and breakdown were increased with the exception of Backjinju and Backjinju-1 during steeping. Shinsunchalbyeo was the most adaptable waxy rice variety for making Gangjung, as its tested scores for expansion ratio and crispness were higher than other waxy rice varieties. The textural properties of Gangjung made from Backjinju and Backjinju-1 had the highest levels of hardness and showed the lowest expansion ratios. Therefore, Backjinju and Backjinju-1 are considered the worst varieties for making Gangjung.

Comparison on Physicochemical Properties of Korean Kidney Bean Starch according to Varieties (품종에 따른 강낭콩 전분의 이화학적 성질비교)

  • Cho, Eun-Ja;Kim, Sung-Kon;Park, Sun-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.787-793
    • /
    • 1998
  • Physicochemical properties of starch of three cultivars of Korean kidney Bean Starches, Pink (PKB), Red (RKB) and White (WKB) were studied. Starch granule was oval/round and smooth in all samples. The amylograms showed a continuous increase of viscosity without peak during heating. The water-binding capacities of starches of PKB, RKB and WKB were 102.1%, 94.7% and 106.9%, respectively. The swelling powers were rapidly incresed in all samples. The amylose content, blue value and relative viscosity of kidney bean starches were $31.1{\sim}32.8%,{\;}0.64{\sim}0.66$ and $2.27{\sim}2.61{\;}mlg^{-1}$, respectively. The transmittance of starch suspension was linearly increased as the temperature raised from $65^{\circ}C{\;}to{\;}85^{\circ}C$. The gelatinization temperature ranges determined by differential scanning calorimetry (DSC) were $71.1{\sim}86.9^{\circ}C for PKB, $71.1{\sim}86.0^{\circ}C$ for RKB and $60.8{\sim}77.9^{\circ}C$ for WKB.

  • PDF