• Title/Summary/Keyword: gelatin-degrading proteinases

Search Result 1, Processing Time 0.014 seconds

Properties and Thermostability of Gelatin-degrading Proteinases in the Fruit of Actinidia chinensis (Kiwifruit) (Kiwifruit 과육에 존재하는 단백질분해효소의 특성과 열안정성)

  • 오순자;김성철;고석찬
    • Journal of Life Science
    • /
    • v.12 no.6
    • /
    • pp.752-758
    • /
    • 2002
  • This study was investigated on properties and thermostability of gelatin-degrading proteinases in the fruit of Actinidia chinensis (kiwifruit) for the industrial application. Three gelatin-degrading proteinases (PI, PII and PIII) were detected from the pulp of fruits. The molecular weights of these proteinases, PI, PII and PIII, were approximately 220 kD, 51 kD, and 26 kD respectively, on the basis of gelatin-containing SDS-PACE. The optimum pH of these proteinases ranged from 2.0 to 5.0 with a maximal activity at pH 4.0. These proteinases had a high sensitivity to E-64 and iodoacetate which are cysteine protease inhibitors, and required DTT, cysteine, and $\beta$-mercaptoethanol for their activities which are stimulators for cysteine proteases. These results indicate that these proteinases are cysteine proteinases and the proteinase PIII is actinidin (EC 3.4.22.14), based on the molecular weight and/or susceptibility against proteinase inhibitors. These proteinases were strongly activated by $Ca^{2+}$, $Mg^{2+}$ and $Mn^{2+}$, whereas strongly inhibited by Zn$^{2+}$ and Hg$^{2+}$. However, these proteinases have slightly different susceptibility against other cations ($Ca^{2+}$, $Cu^{2+}$, $Al^{3+}$, $Ca^{3+}$. The temperature stability of proteinase PIII was more stable than proteinases PI and PII. Moreover, proteinase PIII remained stable below $50^{\circ}C$ for 48hr, showing the residual activity above 75% of the enzyme activity.