• 제목/요약/키워드: gel pore

검색결과 254건 처리시간 0.035초

Supercapacitor용 CoOx ambigel의 전해질에 따른 전기화학적 특성 (Electrochemical characteristic of CoOx ambigel electrode in various electrolyte for supercapacitor)

  • 이희우;김한주;김성호;박수길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.749-752
    • /
    • 2001
  • Very fine cobalt oxide xerogel and ambigel powder were prepared using a unique solution chemistry associated with the sol-gel process. The mesoporous structure of the initial gel is maintained by removing fluid under conditions where the capillary forces that result extraction are either low or no existent, are either low or nonexistent. Controlling both the pore and solid architecture on the nanoscale offers a strategy for the design of supercapacitor. The results materials determine by using electrode that mixed ketjen black and PVdF. But CoO$\_$x/ have the low voltage, so we experimente to change electrolyte and various concentration.

  • PDF

수퍼커패시터용 Co/PVA복합전극의 전기화학적특성 (Electrochemical characteristics of Co/PVA composite electrode for supercapacotor)

  • 이희우;김한주;;박수길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.577-580
    • /
    • 2001
  • Very fine cobalt oxide ambigel powder were prepared using a unique solution chemistry associated with the sol-gel process. The mesoporous structure of the initial gel is maintained by removing fluid under conditions where the capillary forces that result extraction are either low or no existent, are either low or nonexistent. Controlling both the pore and solid architecture on the nanoscale offers a strategy for the design of supercapacitor. But $CoO_x$ have the low voltage, so we experiment using Co/PVA composite electrode.

  • PDF

수퍼커패시터용 Co/PVA복합전극의 전기화학적특성 (Electrochemical characteristics of Co/PVA composite electrode for supercapacitor)

  • 이희우;김한주;;박수길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.577-580
    • /
    • 2001
  • Very fine cobalt oxide ambigel powder were prepared using a unique solution chemistry associated with the sol-gel process. The mesoporous structure of the initial gel is maintained by removing fluid under conditions where the capillary forces that result extraction are either low or no existent, are either low or nonexistent. Controling both the pore and solid architecture on the nanoscale offers a strategy for the design of supercapacitor. But $CoO_{x}$ have the low voltage, so we experiment using CO/PVA composite electrode.

  • PDF

일축배향 기공채널과 향상된 압축강도를 갖는 다공질 알루미나/뮬라이트 층상 복합체 (Porous Alumina/Mullite Layered Composites with Unidirectional Pore Channels and Improved Compressive Strength)

  • 김규헌;김태림;김동현;윤석영;박홍채
    • 한국세라믹학회지
    • /
    • 제51권1호
    • /
    • pp.19-24
    • /
    • 2014
  • Three-layer porous alumina-mullite composites with a symmetric gradient porosity are prepared using a controlled freeze/gel-casting method. In this work, tertiary-butyl alcohol (TBA) and coal fly ash with an appropriate addition of $Al_2O_3$ were used as the freezing vehicle and the starting material, respectively. When sintered at $1300-1500^{\circ}C$, unidirectional macro-pore channels aligned regularly along the growth direction of solid TBA were developed. Simultaneously, the pore channels were surrounded by less porous structured walls. A high degree of solid loading resulted in low porosity and a small pore size, leading to higher compressive strength. The sintered porous layered composite exhibited improved compressive strength with a slight decrease in its porosity. After sintering at $1500^{\circ}C$, the layered composite consisting of outer layers with a 50 wt% solid loading showed the highest compressive strength ($90.8{\pm}3.7MPa$) with porosity of approximately 26.4%.

Synthesis and Characterization of Methyltriethoxysilyl-Mediated Mesoporous Silicalites

  • Rabbani, Mohammad Mahbub;Oh, Weon-Tae;Nam, Dae-Geun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권3호
    • /
    • pp.119-122
    • /
    • 2011
  • A series of mesoporous silicalites was synthesized using different compositions of tetraethylorthosilicate and methyltriethoxysilane (MTES) as the silica source. Cetyltrimethylammonium bromide was used as the organic template. Their detailed pore structures were investigated by transmission electron microscopy, X-ray diffraction, and N2 adsorption method. The thermal properties of these silicalites were studied by thermogravimetric analysis. The increased amount of MTES destroyed mesoporous channels and reduced pore sizes from 3.4 nm to 2.8 nm in calcined silicalites. The calcined silicalite transformed completely into an amorphous state at 30% MTES loading. Methyl pending groups of MTES hindered the structural ordering of ≡Si-O- frameworks, resulting in an amorphous structure. This was caused by the insufficient formation of supramolecular assembly with the organic template. No capillary condensation step was found in MS 7/3 silicalite. The other capillary condensation steps shifted toward the lower relative pressure with increasing MTES content, indicating the reduction of pore sizes.

Design of Mesoporous Silica at Low Acid Concentrations in Triblock Copolymer-Butanol-Water Systems

  • Kleitz, Freddy;Kim, Tae-Wan;Ryoo, Ryong
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권11호
    • /
    • pp.1653-1668
    • /
    • 2005
  • Assembly of hybrid mesophases through the combination of amphiphilic block copolymers, acting as structuredirecting agents, and silicon sources using low acid catalyst concentration regimes is a versatile strategy to produce large quantities of high-quality ordered large-pore mesoporous silicas in a very reproducible manner. Controlling structural and textural properties is proven to be straightforward at low HCl concentrations with the adjustment of synthesis gel composition and the option of adding co-structure-directing molecules. In this account, we illustrate how various types of large-pore mesoporous silica can easily be prepared in high phase purity with tailored pore dimensions and tailored level of framework interconnectivity. Silica mesophases with two-dimensional hexagonal (p6mm) and three-dimensional cubi (Fm$\overline{3}$m, Im$\overline{3}$m and Ia$\overline{3}$d) symmetries are generated in aqueous solution by employing HCl concentrations in the range of 0.1−0.5 M and polyalkylene oxide-based triblock copolymers such as Pluronic P123 $(EO_{20}-PO_{70}-EO_{20})$ and Pluronic F127 $(EO_{106}-PO_{70}-EO_{106})$. Characterizations by powder X-ray diffraction, nitrogen physisorption, and transmission electron microscopy show that the mesoporous materials all possess high specific surface areas, high pore volumes and readily tunable pore diameters in narrow distribution of sizes ranging from 4 to 12 nm. Furthermore, we discuss our recent advances achieved in order to extend widely the phase domains in which single mesostructures are formed. Emphasis is put on the first synthetic product phase diagrams obtained in $SiO_2$-triblock copolymer-BuOH-$H_2O$ systems, with tuning amounts of butanol and silica source correspondingly. It is expected that the extended phase domains will allow designed synthesis of mesoporous silicas with targeted characteristics, offering vast prospects for future applications.

In Vitro and In Vivo Evaluation of Composite Scaffold of BCP, Bioglass and Gelatin for Bone Tissue Engineering

  • Kim, Woo Seok;Nath, Subrata Deb;Bae, Jun Sang;Padalhin, Andrew;Kim, Boram;Song, Myeong Jin;Min, Young Ki
    • 한국재료학회지
    • /
    • 제24권6호
    • /
    • pp.310-318
    • /
    • 2014
  • In this experiment, a highly porous scaffold of biphasic calcium phosphate (BCP) was prepared using the spongereplica method. The BCP scaffold was coated with 58S bioactive glass (BG) and sintered for a second time. The resulting scaffold was coated with gelatin (Gel) and cross-linked with [3-(3-dimethyl aminopropyl) carbodiimide] and N-Hydroxysuccinamide (EDC-NHS). The initial average pore size of the scaffold ranged from 300 to $700{\mu}m$, with more than 85 % porosity. The coating of BG and Gel had a significant effect on the scaffold-pore size, decreasing scaffold porosity while increasing mechanical strength. The material and surface properties were evaluated by means of several experiments involving scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and X-ray diffraction (XRD). Cytotoxicity was evaluated using MTT assay and confocal imaging of MC3T3-E1 pre-osteoblast cells cultured in vitro. Three types of scaffold (BCP, BCP-BG and BCP-BG-Gel) were implanted in a rat skull for in vivo evaluation. After 8 weeks of implantation, bone regeneration occurred in all three types of sample. Interestingly, regeneration was found to be greater (geometrically and physiologically) for neat BCP scaffolds than for two other kinds of composite scaffolds. However, the other two types of scaffolds were still better than the control (i.e., defect without treatment).

황산알루미늄의 가수분해에 의해 석출된 AlO(OH) 겔의 숙성시간이 판상 α-Al2O3의 결정성장에 미치는 영향 (Effect of Aging Time of AlO(OH) Gel Precipitated by Hydrolysis of Aluminum Sulfate on Crystal Growth of the Flaky α-Al2O3)

  • 최동욱;박병기;서정권;이정민
    • 한국세라믹학회지
    • /
    • 제43권9호
    • /
    • pp.575-581
    • /
    • 2006
  • To precipitate the complex gel of flux and aluminum hydroxides gel, aqueous solution of the mixture of $Na_2CO_3\;and\;Na_2PO_4{\cdot}12H_2O$ was added with stirring in aqueous solution of the mixture of $Al_2(SO_4)_3{\cdot}14{\sim}18H_2O,\;Na_2SO_4$, and then the complex gel was aged in $0{\sim}30h\;at\;90^{\circ}C$. As aging time passed, the aluminum hydroxides was grown into the acicular AlO(OH) gel. Also, aging time had an effect on physical properties of the AlO(OH) gel and on crystal growth of the flaky ${\alpha}-Al_2O_3$ prepared by molten-salt precipitation. In this study, the complex gel was crystallized in temperature range of $400{\sim}1,200^{\circ}C$ after drying at $110^{\circ}C$, and then it was investigated to effect of aging time on precipitation temperature, size, thickness, morphology and particle size distribution of the flaky ${\alpha}-Al_2O_3$ crystal. As aging time passed, the flaky a${\alpha}-Al_2O_3$ crystal showed a tendency toward an increase in size and thickness as result from an increase in BET surface area and pore volume of the acicular AlO(OH) gel.

Sol-gel 및 CVD법을 이용한 고온 수소 분리용 silica/alumina 복합막의 합성 (Synthesis of Silica/Alumina Composite Membrane Using Sol-Gel and CVD Method for Hydrogen Purification at High Temperature)

  • 서봉국;이동욱;이규호
    • 멤브레인
    • /
    • 제11권3호
    • /
    • pp.124-132
    • /
    • 2001
  • 고온에서 수소 분리 회수를 목적으로 silica/alumina 복합 막을 합성하였다. 막의 선택 투과 성능을 향상시키기 위해, sol-gel법에 의한 silica 및 alumina층을 중간층으로 도입하고, 그 위에 강제유동 CVD법에 의한 silica를 합성하였다. Sol-gel법에 의해 ${\alpha}$-alumina tube에 합성한 ${\gamma}$-alumina 및 silica 막은 Knudsen 확산 영역의 많은 mesopore를 포함하고 있어서 수소 선택 분리 막으로는 적합하지 못했다. 하지만, sol-gel법에 의해 합성한 silica/${\gamma}$-alumina층에 강제유동 CVD법으로 silica를 합성한 결과, 질소 투과 영역의 세공이 완전히 제거되어, 높은 수소 선택성을 가지는 복합 막이 형성되었다. 그 막은 온도에 따라 수소 투과 속도가 증가하여 $450^{\circ}C$에서 $5.57{\times}10^{-8}molm^2s^LPa^1$의 수소 투과 속도와, 9.52 kJ/mol의 활성화 에너지를 나타냈다. 분자체 효과에 의해 질소 투과가 완전히 배제되고, 수소만 선택적으로 투과되는 silica/alumina 복합막이 성공적으로 합성된다.

  • PDF

고정화 미생물의 기질 유효 확산 (Effective Diffusivity of Substrate of an Immobilized Microorganism in Ca- Alginate Gels)

  • 김광;선우양일;박승조
    • KSBB Journal
    • /
    • 제4권2호
    • /
    • pp.110-117
    • /
    • 1989
  • Ca-alginate에 의하여 포괄된 고정화 Zymomonas mobilios의 담체내부에 있어서 균체자체활성을 물질이동 현상으로 규명하고자 하였다. 또한 균체활성을 장기간 유지할 수 있을때 기질의 유효확산에 다른 반응속도를 고찰하여 균일상계로의 균체량농도를 결정할 수 있는 고정화 최적화를 구하고 그 활성의 변화에 대한 경향을 비교검토하였다. 반응속도와 균체량의 관계가 이론치에 잘 일치되므로써 기질의 유효확산계수, $D_e$와 고정화균체량, $C_c$의 상관관계를 결정할 수 있었고 이로부터 고정화 균체량 250g-dry cell/ l에서 공극율 0로 될 수 있음을 알 수 있었다. 실험치의 결과는 Michaelis-Menten형반응의 0차와 1차사이를 만족하였다.

  • PDF