• Title/Summary/Keyword: gel pore

Search Result 254, Processing Time 0.025 seconds

Diffusion of Progesterone in Polyacrylamide Gel (Polyacrylamide gel에서 Progesterone의 확산 거동)

  • 김명희;김말남;민병례
    • Korean Journal of Microbiology
    • /
    • v.28 no.3
    • /
    • pp.278-282
    • /
    • 1990
  • Diffusion and partition of progesterone into the polyacrylamide gel was examined. Diffusion coefficient of progesterone decreased down to an asymptotic value as the concentration of the organic solvents in the diffusing medium increased. However the partition coefficient diminished steadily. Crosslinking density in the gel didn't affected the diffusion coefficient considerably but lowered the partition coefficient due to the contraction of pore volume of the gel. Progesterone showed higher diffusion coefficient as well as partition coefficient in the polyurethane than in the polyacrylamide gel, which seems to be ascribed to the difference in hydrophobicity, pore volume and pore size of the polymer matrix.

  • PDF

Syunthesis of Silica Aerogel at Ambient Pressure and Characterization (I) (실리카에어로겔의 상압합성 및 특성연구(I))

  • 강신규;최세영
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.12
    • /
    • pp.1394-1402
    • /
    • 1996
  • The Silica gel with the density of 0.2g/cm3 and porosity of 90% was synthesized. The silica wet gel was dried and heat-treated under the ambient pressure after modification of the wet gel surface by TMCS. Specific surface area total pore volume and mean pore radius of dried gel were all increased with increasing heat treatment temperature and confirmed about 1400m2/g, 4.5cc/g and 8 nm respectively after heat treatment above 25$0^{\circ}C$. But the pore size distribution of dried gel was in the range of 1-100nm and was almost indepen-dent of temperature. As the result of external shape pore characteristics and microstructure of gel using SEM similar properties were observed between the silica gel synthesized in this study and the silica aerogel through the super critical drying.

  • PDF

Effect of Water and Aluminum Sulfate Mole Ratio on Pore Characteristics in Synthesis of AlO(OH) Nano Gel by Homogeneous Precipitation (균일침전에 의한 AlO(OH) 나노 겔 합성에서 물/황산알루미늄의 몰 비가 세공특성에 미치는 영향)

  • Choe, Dong-Uk;Park, Byung-Ki;Lee, Jung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.564-568
    • /
    • 2006
  • AlO(OH) nano gel is used in precursor of ceramic material, coating material and catalyst. For use of these, not only physiochemical control for particle morphology, pore characteristic and peptization but also studies of synthetic method for preparation of advanced application products were required. In this study, AlO(OH) nano gel was prepared through the aging and drying process of aluminum hydroxides gel precipitated by the hydrolysis reaction of dilute NaOH solution and aluminum sulfate solution. In this process, optimum synthetic condition of AlO(OH) nano gel having excellent pore volume as studying the effect of water and aluminum sulfate mole ratio on gel precipitates has been studied. Water and aluminum sulfate mole ratio brought about numerous changes on crystal morphology, surface area, pore volume and pore size. Physiochemical properties were investigated as using XRD, TEM, TG/DTA, FT-IR, and $N_2$ BET method.

The Preparation of Porous Silica Glass by the Sol-Gel Method -Change of Properties of Gel by Addition of Fromamide- (졸-겔법에 의한 다공질 실리카 유리의 제조에 관한 연구 -Formamide 첨가에 의한 겔의 성질 변화-)

  • 서정민;신대용;최성일;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.3
    • /
    • pp.169-174
    • /
    • 1993
  • The porous silica glass prepared by the sol-gel method from the mixed solution of Si(OCH3)4, H2O, HCl and CH3OH with HCONH2 as a DCCA (Drying Control Chemical Additives). For investigation the characteristics of gels and glasses, we examined gels and glasses using TG-DTA, XRD, IR, SEM and porosimeter. The more content of formamide in the mixed solution increased, the more pore size and porosity of gel increased. In the excess formamide added gel, the properties of pore of gel were not so changed. The porous silica glass was prepared from the dry gel after heat treatment at 75$0^{\circ}C$. Porosity and mean pore size of the porous silica glass was 17~25% and 40~60$\AA$ relatively.

  • PDF

Effect of pH on Pore Characteristics in Synthesis of High Porous AlO(OH) Gel by Hydrolysis of Al2(SO4)3 and Na2SO4 Mixed Solution (Al2(SO4)3와 Na2SO4 혼합용액의 가수분해에 의한 고기공 AlO(OH) 겔의 합성에서 pH가 기공특성에 미치는 영향)

  • Park, Byung-Ki;Choe, Dong-Uk;Lee, Jae-Rock
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.6 s.301
    • /
    • pp.325-330
    • /
    • 2007
  • High porous AlO(OH) gel is used in precursor of ceramic material, coating material and porous catalyst. For use of these, not only physiochemical control for particle morphology, pore characteristic and peptization but also studies of synthetic method for preparation of high porous AlO(OH) gel were required. In this study, high porous AlO(OH) gel was prepared through the aging and filtration process of aluminum hydroxides gel precipitated by the hydrolysis reaction of $Na_2CO_3$ solution and $Al_2(SO_4)_3$ and $Na_2SO_4$ mixed solution. In this process, optimum synthetic condition of AlO(OH) gel having excellent pore volume as studying the effect of hydrolysis pH on gel precipitates has been studied. Hydrolysis pH brought about numerous changes on crystal morphology, surface area, pore volume and pore size. Physiochemical properties of gel were investigated as using XRD, TEM, TG/DTA, FT-IR and $N_2$ BET method.

Studies on Pore Characteristics of Several Adsorbents (담배용 흡착제들의 동공 특성에 관한 연구)

  • Rhim, Kwang-Soo;Chung, Yong-Soon;Lee, Young-Taek
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.16 no.2
    • /
    • pp.181-190
    • /
    • 1994
  • Various active carbons were made from plant sources of coconut shell, pine tree, oak tree and lignite coal. Pore characteristics of these adsorbents were investigated. 1, With increasing activation time, specific surface area and pore volume increased, but the development of micropores was limited at a certain level. The average pore diameter, by BET, of coconut active carbon was 15.5-21.8$\AA$ and that of lignite carbon was 15.6-31.3$\AA$. The pore diameters of silica-gel, sepiolite and zeolite was 30.9$\AA$, 58.6$\AA$ and 55.7$\AA$, respectively. 2. The Horvath - Kawazoe micropore diameter of coconut shell active carbon was under 10.5$\AA$ and that of the other active carbon was under 20.9$\AA$ but silica-gel 33$\AA$, sepiolite 103 $\AA$ and zeolite was unexpectedly large to be 175$\AA$. From the difference between BET micropore diameter and Howath - Kawazoe diameter, it could be said that silica - gel has comparatively uniform pore diameter but sepiolite and zeolite have very uneven diameter. 3. Total pore volume of coconut shell active carbon was 0.27-1.04 cm3/g but that of the other active carbon, 0.23-0.62 cm3/g, was much lower than that of coconut shell active carbon. Hydrophilic adsorbent silica - gel and sepiolite showed big difference in specific surface area, but pore volumes of these were 0.47 and 0.56 cm3/g showing similar value and micropore volumes of these were, respectively, 0.06 cm3/g and 0.04 cm3/g. Total pore volume of zeolite was 0.1 cm3/g and that of micropore was only 0.02 cm3/g.

  • PDF

Preparation of Glass-Ceramics in $Li_2O-Al_2O_3-TiO_2-SiO_2$ System by Sol-Gel Technique : (I) Preparation of Porous Monolithic Gel in $Li_2O-Al_2O_3-TiO_2-SiO_2$ System by Sol-Gel Method (Sol-Gel법에 의한 $Li_2O-Al_2O_3-TiO_2-SiO_2$계 다공성 결정화 유리의 제조 : (I) Sol-Gel 방법에 의한 $Li_2O-Al_2O_3-TiO_2-SiO_2$계 다공성 겔체의 제조)

  • 조훈성;양중식;권창오;이현호
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.7
    • /
    • pp.535-542
    • /
    • 1993
  • It was investigated in this study that a preparation method, activation energy, surface area, pore volume, pore size distribution and DTA analysis of the dry gel in process of producing monolithic porous gel in Li2O-Al2O3-TiO2-SiO2 system by the sol-gel technique using metal alkoxides. Activation energy for gellation according to the variation of water concentration and the kind of catalysts ranged from 10 to 20kcal/mole. Monolithic dry gels were prepared after drying at 9$0^{\circ}C$ when the amount of water for gellation was 4~8 times more than the stoichiometric amount, that was necessary for the full hydrolysis of the mixed metal alkoxide. The specific surface area, the pore volume, the average pore radius of the dried gel at 18$0^{\circ}C$ according to the various kinds of catalyst were about 348~734$m^2$/g, 0.35~0.70ml/g and 10~35$\AA$, respectively. It showed that the dry gels were porous body. As a result ofthe analysis of DTA, it was confirmed that the exothermaic peaks at 715$^{\circ}C$ and 77$0^{\circ}C$ was clue to the crystallization of dried gel.

  • PDF

Preparation of Porous Boehmite Gel from Waste AlCl3 Solution (AlCl3 폐액으로부터 다공성 Boehmite Gel의 제조)

  • Park, Byung-Ki;Lee, Hak-Soo;Kim, Young-Ho;Lee, Jung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.11
    • /
    • pp.864-871
    • /
    • 2004
  • Porous pseudo-boehmite gel was prepared through the aging process of amorphous aluminum hydroxides gel precipitated by the hydrolysis reaction of dilute NaOH solution and AlCl$_3$ solution. In this study, the synthesis method was studied on porous pseudo-boehmite gel having maximum pore volume, as being investigated the changes of crystal structure, infrared rays absorption spectrum, BET surface area and pore structure when the hydrolysis reaction is controlled in the range of pH 7.6~11.6 and the aging process is hold up for 2~24 h at 60~10$0^{\circ}C$. We could find that the gel precipitates deposited in in range of pH 7.6~9.6 were developed into porous pseudo-boehmite which surface area was 250~357 $m^2$/g, pore volume was 0.4~0.7 cc/g and average pore size was 58~l14$\AA$. However, the gel precipitates deposited in range of pH 10.6~11.6 were developed into bayerite which pore volume was very little.

Pore Characteristics of Porous Alumina Ceramics Fabricated from Boehmite Hydrosol and Alumina Particles (Boehmite 수화졸의 알루미나로 제조한 다공성 알루미나 세라믹스의 기공특성)

  • 오경영
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.547-555
    • /
    • 1996
  • Porous alumina ceramics were fabricated by pseudo-boehmite phydosol-gel process within/without commercial $\alpha$-alumina particles average 1 and 40 micron respectively. The pore characteristics of fired specimens were studied by the measurement of bulk density total porosity thyermal analysis pore volume pore distribution BET area XRD and SEM. with increasing of firing temperature pore volume and BET surface area were decreased and the average pore size was increased to approximately 146$\AA$ upto 80$0^{\circ}C$ by de-watering of [OH] and formation of $\alpha$-alumina. The fired relative density of the alumina-dispersed specimen with average 1 micron particle was increased with the amounts of dispersed particle by bimodal packing theory which is compared to the ones of specimen including of average 40 micron particle. It was confirmed that the percola-tion threshold in porous ceramics with coarser particle (40 micron) has formed between the transformed-alumina from hydrogel and dispersed-alumina of above 50 vol% particle and the total porosity was increased at the threshold point above.

  • PDF

Processing of Porous Ceramics with a Cellular Structure Using Polymer Beads

  • Ha, Jung-Soo;Kim, Chang-Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1159-1164
    • /
    • 2003
  • Two processing routes (i.e., the gel casting and polymer preform routes) using polymer beads were studied to fabricate porous ceramics with a cellular structure. The gel casting route, comprising the gel casting of a ceramic slurry mixed with polymer beads, was found to be inadequate to produce porous ceramic bodies with a interconnected pore structure, due to complete coating of the slurry on the polymer beads, which left just isolated pores in the final sintered bodies. The polymer preform route, involving the infiltration of a polymer beads preform with the ceramic slurry, successfully produced porous ceramics with a highly interconnected network of spherical pores. The pore size of 250-300 $\mu\textrm{m}$ was demonstrated and the porosity ranged from 82 to 86%. This process is advantageous to control the pore size because it is determined by the sizes of polymer beads used. Another feature is the avoidance of hollow skeleton, giving a high strength.