• Title/Summary/Keyword: gel materials

Search Result 1,727, Processing Time 0.03 seconds

Upconversion Photoluminescence Properties of PbMoO4:Er3+/Yb3+ Phosphors Synthesized by Microwave Sol-Gel Method

  • Lim, Chang Sung
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.480-486
    • /
    • 2015
  • $Pb_{1-x}MoO_4:Er^{3+}/Yb^{3+}$ phosphors with various doping concentrations of $Er^{3+}$ and $Yb^{3+}$ ($x=Er^{3+}+Yb^{3+}$, $Er^{3+}=0.05$, 0.1, 0.2, and $Yb^{3+}=0.2$, 0.45) are successfully synthesized using a microwave sol-gel method, and the up-conversion photoluminescence properties are investigated. Well-crystallized particles, which are formed after heat treatment at $900^{\circ}C$ for 16 h, exhibit a fine and homogeneous morphology with particle sizes of $2-5{\mu}m$. Under excitation at 980 nm, the $Pb_{0.7}MoO_4:Er_{0.1}Yb_{0.2}$ and $Pb_{0.5}MoO_4:Er_{0.05}Yb_{0.45}$ particles exhibit a strong 525 nm emission band, a weak 550 nm emission band in the green region, and a very weak 655 nm emission band in the red region. The Raman spectra of the doped particles indicate the presence of strong peaks at higher and lower frequencies induced by the disordered structures of $Pb_{1-x}MoO_4$ through the incorporation of the $Er^{3+}$ and $Yb^{3+}$ ions into the crystal lattice, which results in the unit cell shrinkage accompanying the new phase formation of the $MoO_{4-x}$ group.

Microwave Sol-Gel Process for Microcystalline Ho3+/Yb3+/Tm3+ Tri-Doped NaY(WO4)2 Phosphors and Their Upconversion Photoluminescence Properties

  • Lim, Chang Sung
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.757-763
    • /
    • 2016
  • $Ho^{3+}/Yb^{3+}/Tm^{3+}$ tri-doped $NaY_{1-x}(WO_4)_2$ phosphors with proper doping concentrations of $Ho^{3+}$, $Yb^{3+}$ and $Tm^{3+}$ ($x=Ho^{3+}+Yb^{3+}+Tm^{3+}$, $Ho^{3+}$=0.04, 0.03, 0.02, 0.01, $Yb^{3+}$=0.35, 0.40, 0.45, 0.50 and $Tm^{3+}$=0.01, 0.02, 0.03, 0.04) were successfully synthesized via the microwave sol-gel route, and their upconversion properties were investigated. Well-crystallized microcrystalline particles showed fine and homogeneous microcrystalline morphology with particle sizes of $1-2{\mu}m$. The optical properties were comparatively examined using photoluminescence emission and Raman spectroscopy. Under excitation at 980 nm, the doped particles exhibited white emissions based on blue, green and red emission bands, which correspond to the $^1G_4{\rightarrow}^3H_6$ transitions of $Tm^{3+}$ in the blue region, the $^5S_2/^5F_4{\rightarrow}^5I_8$ transitions of $Ho^{3+}$ in the green region, the $^5F_5{\rightarrow}^5I_8$ transitions of $Ho^{3+}$, and the $^1G_4{\rightarrow}^3F_4$ and $^3H_4{\rightarrow}^3H_6$ transitions of $Tm^{3+}$ in the red region. The pump power dependence of the upconversion emission intensity and the Commission Internationale de L'Eclairage chromaticity coordinates of the phosphors were evaluated in detail.

Synthesis of FAU(Faujasite)-type Zeolite with Variation of Synthesis Condition (합성조건의 변화에 따른 FAU(Faujasite)형 제올라이트의 합성)

  • 임형미;김봉영;남중희;안병길;오성근;정상진
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.132-138
    • /
    • 2003
  • The effect of synthesis condition, type of starting materials, mole ratio, mixing. aging, and crystallization temperature and time, on the size of FAU-type zeolite has been studied. Different mixing route may lead to the different phase of zeolite even with the same starting materials. In general, the size of particles is smaller after aging, especially at lower aging temperature. Two step mixture gel preparation method resulted to not only the reduction of crystallization time but also that of particle size, but without the aging of two mixture gels before the preparation of the overall gel in the second step, only the crystallization time was reduced, not the particle size. The FAU-type zeolite with average particle size 0.4$\mu$m and BET surface area 838 $m^2$/g was obtained from starting materials of liquid sodium silicate, sodium aluminate, and sodium hydroxide with two step preparation of mixture gel, aging of the mixture gels in two steps, which effectively reduced the crystallization time and particle size.

Nail Art Convergence Design Using Mosaic Technique (모자이크 기법을 적용한 네일아트 융합 디자인)

  • Yun, Woo-Ri;Kang, Eun-Ju
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.4
    • /
    • pp.11-17
    • /
    • 2017
  • As nailists do not pay much attention to development of new designs while repeating existing or variated designs, nail design is not developed further and just simple design is repeated. In this perspective, this study is to suggest nail art designs grafted on Mosaic technique using diverse objets to overcome the problems of lacking materials and design skills. For the purposes, this study analysed the concept and characteristics of Mosaic technique based on bibliographical data, Internet web-sites and previous studies, and presented 4 pieces of UV gel nail art design using diverse materials of cellophane paper, gel, hologram and stone as a convergence design. As a result, this study discovered that there is a possibility that more materials would be used and the limitation of existing nail art can be overcome through a suggestion of new convergence nail art. It is expected that further research would be conducted on satisfaction of clients in the developed skills and the result will be helpful to more sale in nail shops.

Fabrication of Sol-Gel derived Antireflective Thin Films of $SiO_2-ZrO_2$ System (솔-젤법에 의한 $SiO_2-ZrO_2$계 무반사 박막의 제조)

  • Kim, Byong-Ho;Hong, Kwon;Namkung, Jang
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.5
    • /
    • pp.617-625
    • /
    • 1995
  • In order to reduce reflectance of soda-lime glass having average reflectance of 7.35% and refractive index of 1.53, single (SiO2), double (SiO2/20SiO2-80ZrO2), and triple (SiO2/ZrO2/75SiO2-25ZrO2) layers were designed and fabricated on the glass substrate by Sol-Gel method. Stble sols of SiO2-ZrO2 binary system for antireflective (AR) coatings were synthesized with tetraethyl orthosilicate (TEOS) and zirconium n-butoxide as precursors and ethylacetoacetate (EAcAc) as a chelating agent in an atmosphere environment. Films were deposited on soda-lime glass at the withdrawal rates of 3~11 cm/min using the prepared polymeric sols by dip-coating and they were heat-treated at 45$0^{\circ}C$ for 10 min to obtain homogeneous, amorphous and crack-free films. In case of SiO2-ZrO2 binary system, refractive index of film increased with an increase of ZrO2 mol%. Designed optical constant of films could be obtained through varying the withdrawal rate. In the visible region (380~780nm), reflectance was measured with UV/VIS/NIR Spectrophotometer. Average reflectances of the prepared single-layer [SiO2 (n=1.46, t=103nm)], double-layer [SiO2 (n=1.46, t=1-4nm)/20SiO2-80ZrO2 (n=1.81, t=82nm)], and triple-layer [SiO2 (n=1.46, t=104nm)/ZrO2 (n=1.90, t=80nm)/75SiO2-25ZrO2 (n=1.61, t=94 nm)] were 4.74%, 0.75% and 0.38%, respectively.

  • PDF

Preparation of Ultra-Low Thermal Expansion L$i_2$O-A$l_2$$O_3$-Si$O_2$ Glass-Ceramics by Sol-gel Technique (졸-겔 방법에 의한 $Li_2O-Al_2O_3-SiO_2$계 저열팽상성 결정화유리의 제조)

  • Yang, Jung-Sik;Kim, Jong-Beom;Yang, Jung-Sik
    • Korean Journal of Materials Research
    • /
    • v.3 no.3
    • /
    • pp.207-214
    • /
    • 1993
  • Glass-ceramic monoliths with an ultra-low thermal expansion coefficient have been synthesized by the sol-gel technique using metal alkoxides as starting materials and dimethyl formamide as a drying control chemical additive. The ternary gels: $Li_2O\cdot Al_2O_3\cdot 2, 4 or $6SiO_2$ were obtained by hydrolysis and polycondensation reactions of metal alkoxides of silicon, aluminum and lithium. To produce cylindrical crack-free gel monoliths, excess water was used to the starting solutions and drying rates were controlled precisely to prevent cracking. In conversion process ,${\beta}$-eucryptite, $Li_2O\cdot Al_2O_3\cdot 3SiO_2$ and P-spodumene with ,${\beta}$-quartz solid solution phase were obtained by heating at the range of 750 ~$1000^{\circ}C$. Above $800^{\circ}C$, the ,${\beta}$-spodumene phase increased while ,${\beta}$-eucryptite phase decreased. The thermal expansion coefficient of the crystallized specimens were -15~ $+5{\times}{10^{-7}}/{\circ}C$ over the temperature range from room temperature to $600^{\circ}C$.

  • PDF

Study on Rheological Characterization of Polyacrylonitrile/Dimethyl Sulfoxide Solution with Change of Storage Times and Temperatures (시간 및 온도변화에 따른 폴리아크릴로니트릴/디메틸술폭시드 중합체 용액의 유변학적 특성 연구)

  • Yang, Jae-Yeon;Lee, Byoung-Min;Kuk, Yun-Su;Kim, Byoung-Suhk;Seo, Min-Kang
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.71-77
    • /
    • 2019
  • In this study, the structural and rheological characterizations of polyacrylonitrile(PAN)/dimethyl sulfoxide(DMSO) solutions for PAN fiber were investigated according to the change of storage times and temperatures. As a result, PAN/DMSO solutions exhibited a very characteristic rheological behavior with variation of temperature. The solutions showed an increase of complex viscosity and a decrease of loss tangent($tan{\delta}$) as temperature was increased over the temperature range of 40 and $70^{\circ}C$ and it could be seen that the viscosity rapidly increased at low frequency. These results indicated that the gel polymer and denser gel structure were formed due to the intermolecular hydrogen bonding of water in the polymer solution depending on the storage time.

Separation of Single-Wall Carbon Nanotubes by Agarose Gel (아가로스 겔을 이용한 단일벽 탄소나노튜브 분리)

  • Yu, Lan;Lim, Yun-Soo;Han, Jong-Hun
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.272-276
    • /
    • 2011
  • The separation of metallic and semiconducting single-wall carbon nanobubes (SWCNTs) by agarose gel method was carried out in this study. The effect of concentration of agarose, SDS (sodium dodecyl sulfate), and pH in the solution on separation behavior was investigated. With increasing the concentration of agarose in the solution, it showed that the ratio of metallic SWCNTs, which was analyzed from UV-vis-NIR spectroscopy, was increased in the solution phase, while the overall concentration of SWCNTs was decreased. With increasing the concentration of SDS, we could observe that the ratio of metallic SWCNTs was increased due to more affinity between SDS molecules and metallic SWCNT. The highest metallic SWCNTs ratio was reached up to 58.4% when the pH of solution was 8.2.

Nanosulfated Silica as a Potential Heterogeneous Catalyst for the Synthesis of Nitrobenzene

  • Khairul Amri;Aan Sabilladin;Remi Ayu Pratika;Ari Sudarmanto;Hilda Ismail;Budhijanto;Mega Fia Lestari;Won-Chun Oh;Karna Wijaya
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.265-272
    • /
    • 2023
  • In this study, the synthesis of nitrobenzene was carried out using sulfated silica catalyst. The study delved into H2SO4/SiO2 as a solid acid catalyst and the effect of its weight variation, as well as the use of a microwave batch reactor in the synthesis of nitrobenzene. SiO2 was prepared using the sol-gel method from TEOS precursor. The formed gel was then refluxed with methanol and calcined at a temperature of 600 ℃. SiO2 with a 200-mesh size was impregnated with 98 % H2SO4 by mixing for 1 h. The resulting 33 % (w/w) H2SO4/SiO2 catalyst was separated by centrifugation, dried, and calcined at 600 ℃. The catalyst was then used as a solid acid catalyst in the synthesis of nitrobenzene. The weights of catalyst used were 0.5; 1; and 1.5 grams. The synthesis of nitrobenzene was carried out with a 1:3 ratio of benzene to nitric acid in a microwave batch reactor at 60 ℃ for 5 h. The resulting nitrobenzene liquid was analyzed using GC-MS to determine the selectivity of the catalyst. Likewise, the use of a microwave batch reactor was found to be appropriate and successful for the synthesis of nitrobenzene. The thermal energy produced by the microwave batch reactor was efficient enough to be used for the nitration reaction. Reactivity and selectivity tests demonstrated that 1 g of H2SO4/SiO2 could generate an average benzene conversion of 40.33 %.

Rare earth oxide luminescence materials via electrospinning: synthesis and characteristics

  • Hou, Zhiyao;Lin, Jun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.200-203
    • /
    • 2009
  • One-dimensional rare earth oxide luminescence nano materials have been prepared by a combination method of sol-gel process and electrospinning. Systematic studie s on optical properties indicate that electrospinning is a facile and novel route for development luminescen ce materials that are useful in fluorescent lamps an d field emission dispalys.

  • PDF