• Title/Summary/Keyword: gel materials

Search Result 1,727, Processing Time 0.029 seconds

Analysis of suppressed thermal conductivity using multiple nanoparticle layers (다중층 나노구조체를 통한 열차단 특성 제어)

  • Tae Ho Noh;Ee Le Shim
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.4
    • /
    • pp.233-242
    • /
    • 2023
  • In recent years, energy-management studies in buildings have proven useful for energy savings. Typically, during heating and cooling, the energy from a given building is lost through its windows. Generally, to block the entry of ultraviolet (UV) and infrared (IR) rays, thin films of deposited metals or metal oxides are used, and the blocking of UV and IR rays by these thin films depends on the materials deposited on them. Therefore, by controlling the thicknesses and densities of the thin films, improving the transmittance of visible light and the blocking of heat rays such as UV and IR may be possible. Such improvements can be realized not only by changing the two-dimensional thin films but also by altering the zero-dimensional (0-D) nanostructures deposited on the films. In this study, 0-D nanoparticles were synthesized using a sol -gel procedure. The synthesized nanoparticles were deposited as deep coatings on polymer and glass substrates. Through spectral analysis in the UV-visible (vis) region, thin-film layers of deposited zinc oxide nanoparticles blocked >95 % of UV rays. For high transmittance in the visible-light region and low transmittance in the IR and UV regions, hybrid multiple layers of silica nanoparticles, zinc oxide particles, and fluorine-doped tin oxide nanoparticles were formed on glass and polymer substrates. Spectrophotometry in the UV-vis-near-IR regions revealed that the substrates prevented heat loss well. The glass and polymer substrates achieved transmittance values of 80 % in the visible-light region, 50 % to 60 % in the IR region, and 90 % in the UV region.

Simultaneous Combination Treatment Using High-Intensity Focused Ultrasound and Fractional Carbon Dioxide Laser Resurfacing for Facial Rejuvenation

  • Kang, Hee Yong;Park, Eun Soo;Nam, Seung Min
    • Medical Lasers
    • /
    • v.8 no.1
    • /
    • pp.13-18
    • /
    • 2019
  • Background and Objectives High-intensity focused ultrasound (HIFU) can produce small zones of thermal damage. A HIFU procedure is non-invasive and it can achieve rejuvenation of facial skin. Fractional CO2 laser resurfacing delivers thermal damage to the pixilated columnar zone of the skin and so evoke collagen remodeling, the same as HIFU. In many cases, the patients who want rejuvenation with HIFU are also good candidates for cutaneous photorejuvenation such as can be accomplished via fractional CO2 resurfacing. If patients are treated in a single session by remodeling both the superficial and deep compartments of skin by using both modalities, then improvement in rhytides and tightening of sagging skin will optimize the aesthetic result. Materials and Methods Between May 2014 and January 2018, a total of 44 patients were treated with combination HIFU and fractional CO2 laser resurfacing according to our protocol. First, the HIFU was applied to the entire face with an average of 300 treatment lines. Immediately after HIFU treatment, the ultrasound gel was washed off and then fractional CO2 laser resurfacing was performed. We evaluated the patients using 4-point grading scales. The clinician examined the skin for evidence of complications after the completion of treatment. Results All the patients' skin quality showed improvement. Further. the clinical results after duel modality treatment were substantially better than that after the use of either modality alone. The recovery times and the incidence of adverse events when quickly and consecutively performing both treatments were similar as compared to those with employing stepwise treatment. We encountered no complications whatsoever. Conclusion When compared with stepwise therapy, combination therapy with HIFU and fractional CO2 resurfacing offers better, safer and more effective clinical results. Thus, for targeting multiple layers of aging facial skin, this combination therapy can be safely performed in a single treatment session.

Shaping ability and apical debris extrusion after root canal preparation with rotary or reciprocating instruments: a micro-CT study

  • Emmanuel Joao Nogueira Leal da Silva;Sara Gomes de Moura;Carolina Oliveira de Lima;Ana Flavia Almeida Barbosa;Waleska Florentino Misael;Mariane Floriano Lopes Santos Lacerda;Luciana Moura Sassone
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.2
    • /
    • pp.16.1-16.11
    • /
    • 2021
  • Objectives: The aim of this study was to evaluate the shaping ability of the TruShape and Reciproc Blue systems and the apical extrusion of debris after root canal instrumentation. The ProTaper Universal system was used as a reference for comparison. Materials and Methods: Thirty-three mandibular premolars with a single canal were scanned using micro-computed tomography and were matched into 3 groups (n = 11) according to the instrumentation system: TruShape, Reciproc Blue and ProTaper Universal. The teeth were accessed and mounted in an apparatus with agarose gel, which simulated apical resistance provided by the periapical tissue and enabled the collection of apically extruded debris. During root canal preparation, 2.5% sodium hypochlorite was used as an irrigant. The samples were scanned again after instrumentation. The percentage of unprepared area, removed dentin, and volume of apically extruded debris were analyzed. The data were analyzed using 1-way analysis of variance and the Tukey test for multiple comparisons at a 5% significance level. Results: No significant differences in the percentage of unprepared area were observed among the systems (p > 0.05). ProTaper Universal presented a higher percentage of dentin removal than the TruShape and Reciproc Blue systems (p < 0.05). The systems produced similar volumes of apically extruded debris (p > 0.05). Conclusions: All systems caused apically extruded debris, without any significant differences among them. TruShape, Reciproc Blue, and ProTaper Universal presented similar percentages of unprepared area after root canal instrumentation; however, ProTaper Universal was associated with higher dentin removal than the other systems.

Improvement of PCR Preprocessing Efficiency through PEO-controlled Synthesis of Silica Nanofibers (PCR 전처리 효율 향상을 위한 PEO 제어 실리카 나노섬유 제작)

  • Seung-Min Lee;Hyeon-Ho Choi;Kwang-Ho Lee
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.465-475
    • /
    • 2023
  • In this study, we demonstrated a silica nanofibrous membrane based on the electrospinning process and evaluated its DNA isolation and purification performance in PCR pretreatment. Generally, silica membranes made of non-woven fabric are used for PCR pretreatment, but this study aimed to improve the efficiency of the pretreatment process by developing a nanofiber-type silica membrane with high specific surface area and porosity. In order to manufacture a nanofiber-shaped silica film while maintaining the original physical properties of silica, nanofiber membranes produced by adding various concentrations of PEO (5 wt%, 8 wt%, and 10 wt%) to silica prepared by the sol-gel method were compared. In terms of nanofiber membrane production, the higher the PEO concentration, the more effective it was in producing nanofiber membranes. The produced silica nanofiber membrane was inserted to a pretreatment device used in commercial PCR equipment, and the pretreatment performance was compared and verified using Salmonella bacteria. When Salmonella was used, samples containing 5 wt% PEO showed superior PCR efficiency compared to samples containing 8 wt% and 10 wt% PEO. These results show that adding 5 wt% of PEO can effectively improve DNA purification and separation by producing a nanofiber-shaped silica film while maintaining the physical properties of silica. We expect that this study will contribute to the development of effective PCR pretreatment technology essential for various molecular biology applications.

Impact of combined at-home bleaching and whitening toothpaste use on the surface and color of a composite resin

  • Carolina Meneghin Barbosa;Renata Siqueira Scatolin;Waldemir Francisco Vieira-Junior;Marcia Hiromi Tanaka;Laura Nobre Ferraz
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.3
    • /
    • pp.26.1-26.12
    • /
    • 2023
  • Objective: This in vitro study aimed to evaluate the effects of different whitening toothpastes on a composite resin during at-home bleaching with 10% carbamide peroxide. Materials and Methods: Sixty samples (7 mm × 2 mm) were used for color and roughness analyses, while another 60 samples (3 mm × 2 mm) were utilized to assess microhardness. The factors analyzed included toothpaste, for which 5 options with varying active agents were tested (distilled water; conventional toothpaste; whitening toothpaste with abrasive agents; whitening toothpaste with abrasive and chemical agents; and whitening toothpaste with abrasive, chemical, and bleaching agents). Brushing and application of whitening gel were performed for 14 days. Surface microhardness (SMH), surface roughness (Ra), and color (ΔL*, Δa*, Δb, ΔE*ab, and ΔE00) were analyzed. The Ra and SMH data were analyzed using mixed generalized linear models for repeated measures, while the color results were assessed using the Kruskal-Wallis and Dunn tests. Results: Between the initial and final time points, all groups demonstrated significant increases in Ra and reductions in SMH. No significant differences were found between groups for SMH at the final time point, at which all groups differed from the distilled water group. Conventional toothpaste exhibited the lowest Ra, while whitening toothpaste with abrasive agent had the highest value. No significant differences were observed in ΔL*, Δa*, and Δb. Conclusions: While toothpaste composition did not affect the color stability and microhardness of resin composite, combining toothbrushing with whitening toothpaste and at-home bleaching enhanced the change in Ra.

Grouting Properties using Thixotropic Material and Vibration Impact Method (가소성 그라우트 재료와 진동 및 충격을 부여하는 공법에 의한 지반개량 특성)

  • Keeseok Kim;Haseog Kim;Bong-hyun Baek;Simhun Yuk
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.37-47
    • /
    • 2024
  • In grouting, the LW method is commonly employed to induce the gelation of cementitious material using water glass, thereby restricting the extent of material injection. Nevertheless, challenges manifest when materials are lost before gelation, particularly in regions with high groundwater flow rates or significant subsurface voids. This study developed a thixotropic grout material using LFS and GGBFS to mitigate material loss during injection, with an assessment of its flow characteristics, durability in marine exposure, strength, and injection properties. The outcomes revealed that the thixotropic grout material exhibited flow ranging from 105 to 143 mm and enhanced strength and durability compared to the LW method. Furthermore, field tests substantiated that applying vibration and impact improved impermeability.

Immunization of mice with chimeric protein-loaded aluminum hydroxide and selenium nanoparticles induces reduction of Brucella melitensis infection in mice

  • Tahereh Goudarzi;Morteza Abkar;Zahra Zamanzadeh;Mahdi Fasihi-Ramandi
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.4
    • /
    • pp.304-312
    • /
    • 2023
  • Purpose: Due to the many problems with commercially available vaccines, the production of effective vaccines against brucellosis is a necessity. The aim of this study was to evaluate the immune responses caused by the chimeric protein consisting of trigger factor, Bp26, and Omp31 (TBO) along with aluminum hydroxide (AH/TBO) and selenium (Se/TBO) nanoparticles (NPs) as adjuvants in mouse model. Materials and Methods: Recombinant antigen expression was induced in Escherichia coli BL21 (DE3) bacteria using IPTG (isopropyl-d-1-thiogalactopyranoside). Purification and characterization of recombinant protein was conducted through NiFe3O4 NPs, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and Western blot. NP characteristics, including morphology and particle size, were measured in vitro. The recombinant TBO was loaded on to AH and Se NPs and were administered subcutaneously. After mice immunization, measurement of antibody titter and protection assay was performed. Results: The average sizes of AH and Se NPs were about 60 nm and 150 nm, respectively. The enzyme-linked immunosorbent assay results showed that the serum of mice immunized by subcutaneous injection with both nanovaccines produced significant immunoglobulin G (IgG) responses against the chimeric antigen. The results of TBO-specific IgG isotype (IgG2a/IgG1) analysis showed that both AH and Se NPs induced a type to T-helper immune response. In addition, the results of the challenge with the pathogenic strain of Brucella melitensis 16M showed that vaccinated mice with AH/TBO NPs indicated a higher reduction of bacterial culture than immunized mice with Se/TBO NPs and TBO alone. Conclusion: The results showed that AH NPs carrying chimeric antigen can be a promising vaccine candidate against brucellosis by producing protective immunity.

Comparative evaluation of gold nanoparticles and Alum as immune enhancers against rabies vaccine and related immune reactivity, physiological, and histopathological alterations: in vivo study

  • Rehab Essam El-Din El-Hennamy;Sahar Mohamed Mahmoud;Nabil Ahmed El-Yamany;Hanaa Hassan Hassanein;Mohamed Elsayed Amer;Aly Fahmy Mohamed
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.1
    • /
    • pp.32-46
    • /
    • 2023
  • Purpose: The present study aimed to compare the immune-enhancing potential of gold nanoparticles (AuNPs) to Alum against rabies vaccine and the related immunological, physiological, and histopathological effects. Materials and Methods: Alum and AuNPs sole and in combination with rabies vaccine were used at 0.35 mg/mL and 40 nM/mL, respectively. Rats used were categorized into six groups (20/each): control rats, rabies vaccine, aluminum phosphate gel, rabies vaccine adsorbed to Alum, AuNPs, and rabies vaccine adjuvant AuNPs. Results: Liver and kidney functions were in the normal range after AuNPs and Alum adjuvanted vaccine compared to control. Interleukin-6 and interferon-γ levels were significantly increased in groups immunized with Alum and AuNPs adjuvanted vaccine, the peak level was in the case of AuNP adjuvanted vaccine on the 14th day. Ninety days post-vaccination, total immunoglobulin G (IgG) against adjuvanted rabies vaccine showed a significantly elevated antirabies IgG with AuNPs and Alum adsorbed vaccine compared with unadjuvanted one. The total antioxidant capacity, malondialdehyde (MDA) levels, superoxide dismutase, and glutathione peroxidase activities were significantly increased post-adjuvanted AuNPs adjuvanted vaccine vaccination than in Alum adsorbed vaccine, while MDA was significantly decreased. The histopathological examination revealed detectable alterations post-AuNPs and Alum adjuvanted vaccine immunization compared with liver and kidney profiles post-administration of unadjuvanted and non-immunized groups, meanwhile, splenic tissue revealed hyperplasia of lymphoid follicles indicating increased immune reactivity. Conclusion: The AuNPs are promising enhancers of the immune response as Alum, and the undesirable effects of AuNPs could be managed by using suitable sizes, shapes, and concentrations.

Prolactin Monomeric Polyethylene Glycol Measurement Method and Study of Reference Value Verification

  • Dong Hyuk Ha;Hwa-Jin Ryu;Hyun-Su Cho;Sun-Young Shin
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.27 no.2
    • /
    • pp.133-136
    • /
    • 2023
  • Purpose: Prolactin in the blood is separated into three types, and over 90% of prolactin presents as a double monomer (23 KDa). Rarely, it can exist in the size of big prolactin (150 KDa), which is called macroprolactin and is known as an autoantibody complex. When macroprolactin accounts for more than 60% of prolactin in the blood, it is called macroprolactinemia. The presence of such macroprolactin was first reported in a patient with hyperprolactinemia but without typical symptoms. Macroprolactinemia is emerging as an important cause of idiopathic hyperprolactinemia. The polyethylene glycol (PEG) precipitation method using the property of precipitating large-molecular-weight proteins is simple and recently has been widely used as a screening test. The results are in good agreement with the results of gel chromatography. The purpose of this study was to confirm the measurement method and reference value verification of monomeric prolactin in blood prolactin using the PEG precipitation method. Materials and Methods: For 40 examinees who visited the Gangnam Center of Seoul National University Hospital in 2021, the prolactin level was verified using radioimmunoassay (RIA). For macroprolactinemia PEG precipitation method, 25% PEG (molecular weight 6000kDa) solution and serum were mixed in equal amounts in a test tube, then left at room temperature for 20 minutes and centrifuged at 4℃ for 30 minutes (1500g). The prolactin level was measured in the supernatant. Results : After confirming that more than 90% of the 40 tested samples within the reference range <25 ng/mL, the same value as the reference value for prolactin was applied. Since the concentration of monomeric prolactin in serum from which macroprolactin has been removed from blood is diluted 1:1 with PEG, our laboratory is currently reporting the result by multiplying the result by a dilution factor of 2. Conclusion: Radioimmunoassay using PEG precipitation method using the property of precipitating large molecular weight proteins is simple and effective for quantitative measurement of monomeric prolactin in blood prolactin.

Hydrothermal Synthesis of Kaolinite (캐올리나이트의 수열합성)

  • Jang, Young-Nam;Ryu, Gyoung-Won;Chae, Soo-Chun;Lee, Sung-Ki;Suh, Yong-Jae;Bae, In-Kook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.147-153
    • /
    • 2007
  • Kaolinite [$Al_2Si_2O_5(OH)_4$] was successfully synthesized by a hydrothermal process from amorphous $Al(OH)_3$ and $SiO_2$ at $230^{\circ}C$ under the pressure of $30 kg/cm^2$. The experiments were performed varying temperatures ($180{\sim}280^{\circ}C$), pressure ($10{\sim}60kg/cm^2$), chemistry ($Al_2O_3/SiO_2 = 0.5{\sim}0.38$) and pH ($0.3{\sim}9.5$) of the solution. The autoclaving was carried out in a closed stainless steel vessel. Kaolinite appears from the starting composition of $Al_2O_3/SiO_2= 0.5$ with boehmite and was stable as a single phase with the composition of $Al_2O_3/SiO_2=0.45$. Boehmite was a stable phase below $200^{\circ}C$ for the 240 h period of autoclaving, but kaolinite appeared even in 20 h at $230^{\circ}C$. The single kaolinite phase of a good crystallinity was observed at pH ranging 2 to 6. That indicates that pH is one of the most critical parameters for the successful formation of kaolinite. The optimal molar ratio of $Al_2O_3$ to $SiO_2$ was determined to be 0.45. The XRD pattern of the synthesized kaolinite coincided with that of natural one and its morphology was the cluster type of the kaolinite crystals (diameter = ${\sim}3{\mu}m$), irrespective of starting material, composition and temperature.