• Title/Summary/Keyword: gel formation

Search Result 709, Processing Time 0.029 seconds

Effects of Specific Interaction Altering Reagents on Hardnesses of Succinylated Soy Protein Gel

  • Bae, Dongho;Jung, Hosun;Choi, Yong-Hee
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.125-129
    • /
    • 1999
  • The changes in gel characteristics of soy protein and succinylated soy protein due to various specific interaction-altering reagents which affect the formation and textural properties of gels, were studied. The reagents were added to 15% soy protein solutions prior to heat treatment. Succinylated soy protein formed harder gel without the addition of reagents. Hardly no gels were formed with urea, indicating that hydrogen bonds significantly contributed to the formation and hardness of the gel and the effects of urea on the hardness of succinylated soy protein gel were more significant. Disulfide bonds were important in the formation of hard gels whether they were succinylated or not, but the contributions of hydrophobic interactions to gel hardness were relatively insignificant. The hardness reducing effects of NaCl and NaSCN were more significant in succinylated soy protein gel. As such, electrostatic interactions were important for succinylated soy protein to form hard gel but not for unmodified soy protein.

  • PDF

Effects of Various Reagents on Textural Properties of Soy Protein Gel (대두단백겔의 물성에 미치는 분자결합력 저해 시약의 영향)

  • 배동호;정호선
    • Food Science and Preservation
    • /
    • v.5 no.1
    • /
    • pp.65-71
    • /
    • 1998
  • The changes in gel characteristics of soy protein as a result of various reagents that alter specific interactions which affect the formation and textural properties of gels, were studied. The reagents were added to 15% soy protein solutions prior to heat treatment. The gels were not formed with urea, indicating that hydrogen bonds significantly contributed to the formation and hardness of soy protein gel. Hydrophobic interactions and disulfide bonds compensated for hydrogen bonds and the contributions of electrostatic interactions to gel hardness are relatively insignificant. The farce primarily responsible for gel cohesiveness appeared to be disulfide bonds, because a significant decrease in cohesiveness was found only with the presence of N-ethylmaleimide. Adhesiveness decreased only with the addition of urea, and thus the contribution of hydrogen bonding to adhesiveness of gel could be concluded to be resent. However, adhesiveness was suggested to be interpreted not only wile molecular forces involved in gel formation but also with hydration properties of protein.

  • PDF

Mimicking the pattern formation of fruits and leaves using gel materials

  • Chen, Li;Zhang, Yang;Swaddiwudhipong, Somsak;Liu, Zishun
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.575-588
    • /
    • 2014
  • Gel materials have recently gained more attention due to its unique capability of large and reversible volumetric changes. This study explores the possibility of mimicking the pattern formation of certain natural fruits during their growing process and leaves during drying processes through the swelling and de-swelling of gel materials. This will hopefully provide certain technical explanations on the morphology of fruits and plants. We adopt the inhomogeneous field gel theory to predict the deformation configurations of gel structures to describe the morphology of natural fruits and plants. The growing processes of apple and capsicum are simulated by imposing appropriate boundary conditions and field loading via varying the chemical potential from their immature to mature stages. The drying processes of three types of leaves with different vein structures are also investigated. The simulations lead to promising results and demonstrate that pattern formation of fruits and plants may be described from mechanical perspective by the behavior of gel materials based on the inhomogeneous field theory.

Effects of Protein Unfolding and Soluble Aggregates Formation on the Gel Strength of Whey Proteins

  • Park, Moon-Jung;Michael E. Mangino
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.4
    • /
    • pp.281-284
    • /
    • 1997
  • Heat-induced gelation is an important functional property of whey proteins. Preheating of calcium reduced whey was reported to increase gel strength. 5% whey-protein solutions were preheated at pH7 and at various temperatures(60~8$0^{\circ}C$) for 15 minutes. The amount of soluble aggregates and denaturation enthalpy of preheated whey proteins were measured. Preheating temperature was negatively correlated with denaturation enthalpy($R^2$=0.857, P=0.08) and positive with the amount of soluble aggregates($R^2$=0.921, P=0.002). Denaturation enthalpy was negatively correlated with gel strength($R^2$=0.93, P=0.002). Soluble aggregates and gel strength were positively correlated($R^2$=0.972, P=0.0003). The formation of three dimensional gel network requires controlled protein denaturation and aggregation. Since preheating leads to the partial denaturation of proteins and the formation of soluble aggregates, preheated whey proteins have a higher gel strength than non-preheated one.

  • PDF

Intramolecular Excimer Formation Processes of 1,3-Dipyrenylpropane in Silicate Sol-Gel

  • Gwon, Mi Su;Lee, Yun Hui;An, Byeong Tae;Lee, Min Yeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.158-162
    • /
    • 1996
  • The steady-state emission and fluorescence lifetimes of 1,3-dipyrenylpropane were measured in silicate sol-gel and xerogel matrices. In sol solution, the fluorescence emission spectra of monomer and excimer resemble those in hydrocarbon solvents. In gel and xerogel condition, however, the fluorescence spectra exhibit significant change, largely confirming the intramolecular motions in gel pores are influenced by microviscosity. The rate constants for intramolecular excimer formation were obtained from the measured fluorescence lifetimes and the rate processes for excimer forming in silicate sol-gel are described by a simple kinetic scheme.

Mechanism of Organogel Formation from Mixed-Ligand Silver (I) Carboxylates

  • Kim, Ji-Yeon;Park, Cheol-Hee;Kim, Sang-Ho;Yoon, Sung-Ho;Piao, Longhai
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3267-3273
    • /
    • 2011
  • Ag(I) carboxylate gelators with mixed-ligands were systemically investigated to understand the mechanism of the organic gel formation. The gelators constructed 3-D networks of nanometer-sized thin fibers which facilitated gel formation in various aromatic organic solvents, even at very low concentrations. The loss of reflection peaks in the X-ray diffraction data indicated the reduction of strong interactions between the long alkyl chains as the Ag(I) carboxylates formed gels by maximizing their interactions with the organic solvents. The gelation temperature ($T_{gel}$) was measured to explore the interaction between the gelator molecules and solvents depending on their composition and concentration. Based on the gelation phenomena, a dissociation/re-association mechanism was proposed.

Solid-State $^1H$ and $^{29}Si$ NMR Studies of Silicate and Borosilicate Gel to Glass Conversion

  • 양경화;우애자
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.8
    • /
    • pp.696-699
    • /
    • 1996
  • Silicate and borosilicate gels were prepared by the sol-gel process and thermally treated in the 150-850 ℃ temperature range. Solid-state 1H MAS and 29Si CP/MAS NMR spectroscopy were used to investigate the effects of heat treatments on the silicate gel to glass conversion process. The 1H NMR isotropic chemical shifts and the relative intensities of hydrogen bonded and isolated silanol groups have been used to access the information concerning the dehydration process on the silicate gel surface. The 29Si NMR isotropic chemical shifts affected by the local silicon environment have been used to determine the degree of crosslinking, i.e. the number of siloxane bonds. These NMR results suggest that the silicate gel to glass conversion process is occurred by two stages which are dependent on the temperature; (1) the formation of particles up to 450 ℃ and (2) the formation of large particles by aggregation of each separated single particle above 450 ℃. In addition, the effects of B atom on the formation of borosiloxane bonds in borosilicates have been discussed.

Factors Affecting Appressorium Formation in the Rice Blast Fungus Magnaporthe grisea (벼 도열병균의 부차기 형성에 미치는 요인 분석)

  • 이승철;강신호;이용환
    • Korean Journal Plant Pathology
    • /
    • v.14 no.5
    • /
    • pp.413-417
    • /
    • 1998
  • Magnaporthe grisea, the casual agent of rice blast, requires formation of an appressorium, a dome-shaped and well melanized infection structure, to penetrate its host. Environmental cues that induce appressorium formation include hydrophobicity and hardness of contact surface and chemicals from its host. Artificial surfaces are widely used to induce appressorium formation, but frequencies of appressorium induction are not always consistent. To understand variable induction of appressorium formation in M. grisea, several factors were tested on GelBond. High levels of appressorium formation were induced over a wide range of temperature (20~3$0^{\circ}C$) and pH (4~7). spore age up to 3-week-old did not significantly affect appressorium formation, but only a few apressoria on GelBond. However, adenosine specifically inhibited appressorium formation. Adenosine inhibition of appressorium formation was restored by exogenous addition of cAMP. Germ tube tips of M. grisea maintained the ability to differentiate appressoria by chemical inducers on GelBond at least up to 16 h after conidia germination. These results suggest that environmental factors have little effect on the variable induction of appressorium formation on the artificial surface in M. grisea.

  • PDF

Changes of haemolymph proteins in Pieris rapae L. during the cuticle formation and hardening process (배추흰나비의 큐티클 形成과 硬化에 따른 혈림프 단백질의 變化)

  • Hak Ryul Kim;Eul Won Seo
    • The Korean Journal of Zoology
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 1980
  • Changes and possible origin of haemolymph proteins during the cuticle formation and hardening are determined by means of acrylamide gel electrophoresis and immunodiffusion. The results by acrylamide gel electrophoresis showed at least 19 protein bands in the haemolymph and 13 fractions in the fat body with relatively constant pattern during the period of cuticle formation and hardening. Both haemolymph and fat body proteins are generally characterized by the presence of three to four heavy stained bands and several thin bands near the top region of the gel. At least over five haemolymph proteins are constantly present during this period. Immunodiffusion tests show that of total eight to nine pupal haemolymph proteins two proteins were already detected in the fat body before pupation and other two proteins were also found in the fat body immediately after pupation, suggesting fat body as possible source of these two haemolymph proteins.

  • PDF

Preparation conditions of YBCO Superconducting Sol-Gel Powder (YBCO 초전도 분말의 졸겔 제작법에 관한 조건 연구)

  • Cho, Yong-Joon;Soh, Dea-Wha;Jeon, Yong-Woo;Park, Jeong-Cheul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.555-558
    • /
    • 2004
  • In this paper, the variable producing conditions of YBCO superconducting powder by use of sol-gel method was investigated. YBCO superconducting powder which was prepared by sol-gel method was shown the characteristic gel formation, particle size and its properties under variable preparation conditions, such as pH, drying and processing time, and powder heat treatment, etc.

  • PDF