• Title/Summary/Keyword: gel electrolyte

Search Result 206, Processing Time 0.029 seconds

Characterization of Ionic Liquid Contained Polymer Gel Electrolyte (이온성 액체를 함유한 고분자 겔 전해질의 특성연구)

  • Ryu, Sang-Woog;Song, Eui-Hwan
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.85-89
    • /
    • 2008
  • Acrylate polymer gel electrolytes containing N-methoxymethyl-N-methylpyrrolidium bis (trifluoro - methansulfonyl) imide (MPSI) as an ionic liquid were synthesized by solution polymerization in the presence of carbonate solvent. ionic conductivity and mechanical properties of the polymer gel electrolytes were investigated by impedance analyzer and universal testing machine as a function of the amount of polymer, and ionic liquid and type of crosslinker. The maximum ionic conductivity of polymer gel electrolytes was 0.8 mS/cm at $25^{\circ}C$ with 15 wt% of polymer, 30 wt% of ionic liquid and 5 wt% of crosslinker. The mechanical analysis showed that the tensile strength of polymer gel electrolytes increased with additional polymer contents and had the maximum value of 0.5 MPa with a reasonable ionic conductivity.

In Situ Crosslinked Ionic Gel Polymer Electrolytes for Dye Sensitized Solar Cells

  • Shim, Hyo-Jin;Kim, Dong-Wook;Lee, Chang-Jin;Kang, Yong-Ku;Suh, Dong-Hack
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.424-428
    • /
    • 2008
  • We prepared an ionic gel polymer electrolyte for dye-sensitized solar cells (DSSCs) without leakage problem. Triiodide compound (BTDI) was synthesized by the reaction of benzene tricarbonyl trichloride with diethylene glycol monotosylate and subsequent substitution of tosylate by iodide using NaI. Bisimidazole was prepared by the reaction of imidazole with the triethylene glycol ditosylate under strongly basic condition provided by NaH. BTDI and bisimidazole dissolved in an ionic liquid were injected into the cells and permeated into the $TiO_2$ nanopores. In situ crosslinking was then carried out by heating to form a network structure of poly(imidazolium iodide), thereby converting the ionic liquid electrolytes to a gel or a quasi-solid state. A monomer (BTDI and bisimidazole) concentration in the electrolytes of as low as 30 wt% was sufficient to form a stable gel type electrolyte. The DSSCs based on the gel polymer electrolytes showed a power conversion efficiency of as high as 1.15% with a short circuit current density of $5.69\;mAcm^{-2}$, an open circuit voltage of 0.525 V, and a fill factor of 0.43.

Electrochemical Properties of PVdF Gel Polymer Electrolyte with Plasticizer for Lithium/sulfur Battery (리튬 유황 전지용 PVdF 겔 고분자 전해질의 가소제에 따른 전기화학적 특성 평가)

  • Ryu, Ho-Suk;Kim, Jong-Seon;Kim, Dong-Ju;Kim, Dong-Yeon;Kim, Ic-Pyo;Ahn, Hyo-Jun;Kim, Ki-Won;Ahn, Jou-Hyeon;Lee, Gun-Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.213-218
    • /
    • 2007
  • In order to find out proper PVdF gel polymer electrolyte for Li/S battery, we investigated PVdF gel polymer electrolytes with various glyme type plasticizer such as polyglyme, tetraglyme, triglyme. The organic solvents as triglyme, tetraglyme, polyglyme (Mn = 250, 500) has different chain length of ethylene oxide(EO) in solvent of glyme system. ionic conductivity decreased as increasing chain length of EO in plasticizers. Ionic conductivity of PVdF gel electrolyte with tetraglyme, triglyme, polyglyme (Mn = 250, 500) at room temperature was $5{\times}10^{-4},\;3{\times}10^{-4},\;6{\times}10^{-5},\;3{\times}10^{-5}\;S/cm$, respectively. Li/S cell with PVdF gel polymer electrolyte using tetraglyme plasticizer had low interfacial resistance and the highest initial discharge capacity of 1232 mAh/g of active sulfur, which was about 70% utilization of theoretical value.

Fabrication of Gel-type Electrolyte for the Development of Reference Electrode for Sea Water and Application to Measuring Equipment for Total Residual Oxidants (해수용 기준전극 개발을 위한 겔 타입 내부전해질 제조 및 잔류염소 측정장치에의 적용)

  • Kim, Yu-Jin;Lee, Hae-Don;Kim, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.153-157
    • /
    • 2017
  • Gel type internal electrolytes were synthesized by varying hydroxyethyl-cellulose (HEC) amounts and their durability and conductivity were measured. The ionic conductivity decreased as the content of HEC increased thus the internal electrolyte containing more than 12% of HEC could not be used as a reference electrode. Based on durability test results, as the HEC amount decreased carrier density resulting in increasing of the amount of KCl coming out of the porous membrane. Therefore in order to use long time at ballast water treatment systems, we selected 10% HEC for gel type internal electrolyte. The resolution test for total residual oxidants (TRO) was carried out using the TRO sensor and the gel type reference electrode made of 10% HEC. A 50 mV potential was applied to the TRO sensor for 30 sec and changes in the current were measured. It was confirmed that the TRO concentrations ranging from 0 to 15 mg/L could be separated at salinity conditions of 0.2~30 PSU. The results indicated that the TRO concentration at sea water and at fresh water was successfully measured by the TRO sensor constructed with the reference electrode using gel-type internal electrolyte of HEC.

A Study on the Organic/inorganic Composite Electrolyte Membranes for Dye Sensitized Solar Cell (염료감응형 태양전지를 위한 유기/무기 복합 전해질막에 대한 연구)

  • Koo, Ja-Kyung;Choi, Mi-Jung;Shin, Chun-Hwa;Kang, Tae-Un;Cho, Nam-Jun
    • Membrane Journal
    • /
    • v.18 no.4
    • /
    • pp.345-353
    • /
    • 2008
  • Organic/inorganic composite electrolyte membranes were prepared for dye sensitized solar cell (DSSC). Polyethylene Glycol (PEG)s with various molecular weight (400, 600, 1,500 and 3,400) was ethoxysilated to fabricate organic/inorganic composite materials through sol-gel processes. The electrolyte membranes were produced by doping the composite materials with NaI and $I_2$, and their ionic conducting behavior was investigated. The ionic conductivity of the composite electrolyte was highly affected by the PEG molecular weight, and the highest conductivity was shown by the composite membrane prepared with PEG with the molecular weight of 1,500. The composite electrolyte membranes showed considerable improvement of ionic conductivity. Compared to PEO electrolyte membranes, the composite electrolyte membrane prepared by PEG, MW 1,500, showed much higher ionic conductivity.

Photovoltaic Performance of Dye-sensitized Solar Cells assembled with Hybrid Composite Membrane based on Polypropylene Non-woven Matrix

  • Choi, Yeon-Jeong;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.605-608
    • /
    • 2011
  • Hybrid composite membranes were prepared by coating poly(ethylene oxide) and $SiO_2$ particles onto the porous polypropylene nonwoven matrix. Gel polymer electrolytes prepared by soaking the hybrid composite membranes in an organic electrolyte solution exhibited ionic conductivities higher than $1.1{\times}10^{-3}Scm^{-1}$ at room temperature. Dyesensitized solar cell (DSSC) employing the hybrid composite membrane with PEO and 10 wt % $SiO_2$ exhibited an open circuit voltage of 0.77 V and a short circuit current of 10.78 $mAcm^{-2}$ at an incident light intensity of 100 $mWcm^{-2}$, yielding a conversion efficiency of 5.2%. DSSC employing the hybrid composite membrane showed more stable photovoltaic performance than that of the DSSC assembled with liquid electrolyte.

Improvement of Efficiency of Photoelectrochemical Cells by Blocking Layer Coatings (차단막 코팅을 이용한 광전기화학셀 효율 개선)

  • Moon, Byung-Ho;Kwak, Dong-Joo;Park, Cha-Soo;Sung, Youl-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1485-1486
    • /
    • 2011
  • A layer of $TiO_2$ thin film less than ~500nm in thickness, as a blocking layer, was coated by sol-gel method directly onto the anode electrode to be isolated from the electrolyte in dye-sensitized solar cells (DSCs). This is to prevent the electrons from back-transferring from the electrode to the electrolyte (I-/I3-). The effects of heat treatment conditions of the gel and as-coated film on the thickness and consolidation to substrate were studied. The flexible DSCs were fabricated with working electrode of Ti thin foil coated with blocking $TiO_2$ layer, dye-attached mesoporous $TiO_2$ film, gel electrolyte and counter electrode of Pt-deposited indium doped tin oxide/polyethylene naphthalate (ITO/PEN). The photo-current conversion efficiency of the cell was 5.3% ($V_{oc}=0.678V$, $J_{sc}=12.181mA/cm^2$, ff=0.634) under AM1.5, 100 mW/$cm^2$ illumination.

  • PDF

Preparation and Characterization of Ta-substituted Li7La3Zr2-xO12 Garnet Solid Electrolyte by Sol-Gel Processing

  • Yoon, Sang A;Oh, Nu Ri;Yoo, Ae Ri;Lee, Hee Gyun;Lee, Hee Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.278-284
    • /
    • 2017
  • In this work, Ta-substituted $Li_7La_3Zr_{2-x}O_{12}$ (LLZTO) powder and pellets with garnet cubic structure were fabricated and characterized by modified and optimized sol-gel synthesis. Ta-substituted LLZO powder with the smallest grain size and pure cubic structure with little pyrochlore phase was obtained by synthesis method in which Li and La sources in propanol solvent were mixed together with Zr and Ta sources in 2-methoxy ethanol. The LLZTO pellets made with the prepared powder showed cubic garnet structure for all conditions when the amount of Li addition was varied from 6.2 to 7.4 mol. All the X-ray peaks of the pyrochlore phase disappeared when the Li addition was increased above 7.0 mol. When the final sintering temperature was varied, the LLZTO pellet had a pyrochlore-mixed cubic phase above $1000^{\circ}C$. However, the surface morphology became much denser when the final sintering temperature was increased. The sol-gel-driven LLZTO pellet with a sintering temperature of $1100^{\circ}C$ showed a lithium ionic conductivity of 0.21 mS/cm when Au was adopted as electrode material for the blocking capacitor. The results of this study suggest that modified sol-gel synthesis is the optimum method to obtain cubic phase of LLZTO powder for highly dense and conductive solid electrolyte ceramics.

The Effect of a Sol-gel Formed TiO2 Blocking Layer on the Efficiency of Dye-sensitized Solar Cells

  • Cho, Tae-Yeon;Yoon, Soon-Gil;Sekhon, S.S.;Kang, Man-Gu;Han, Chi-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3629-3633
    • /
    • 2011
  • The effect of a dense $TiO_2$ blocking layer prepared using the sol-gel method on the performance of dye-sensitized solar cells was studied. The blocking layer formed directly on the working electrode, separated it from the electrolyte, and prevented the back transfer of electrons from the electrode to the electrolyte. The dyesensitized solar cells were prepared with a working electrode of fluorine-doped tin oxide glass coated with a blocking layer of dense $TiO_2$, a dye-attached mesoporous $TiO_2$ film, and a nano-gel electrolyte, and a counter electrode of Pt-deposited FTO glass. The gel processing conditions and heat treatment temperature for blocking layer formation affected the morphology and performance of the cells, and their optimal values were determined. The introduction of the blocking layer increased the conversion efficiency of the cell by 7.37% for the cell without a blocking layer to 8.55% for the cell with a dense $TiO_2$ blocking layer, under standard illumination conditions. The short-circuit current density ($J_{sc}$) and open-circuit voltage ($V_{oc}$) also were increased by the addition of a dense $TiO_2$ blocking layer.

The Fabrication and Characteristics of FET-Type Electrolyte Sensors by Using Sol-Gel Technique. (Sol-Gel 방법을 이용한 FET형 전해질 센서의 제작 및 특성)

  • Moon, S.Y.;Cho, B.W.;Kim, C.S.;Koh, K.N.;Sohn, B.K.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.243-253
    • /
    • 1998
  • PVC membrane, which has been used for membrane of electrolyte sensors, shortened sensor lifetime due to poor adhesion to sensor surface and exhibited difficulty in standardization and mass-production. To overcome these problems, the membrane solution was prepared with neutral carrier, matrix(TEOS:DEDMS=1:3), solvent(ethanol), and a catalyzer(HCl). The fabricated electrolyte sensors showed typical electrical characteristics of MISFET (metal-insulator-semiconductor field-effect transistor). The K-, Ca- and Na-ISFETs showed sensitivity of 53, 25 and 50 mV/decade in wide concentration range, respectively. The response time was about 90 seconds and the drift was 0.05mV/hour. These results suggest that the sol-gel method and the lift-off technique can be applied to formation of membranes and expected to improve mass-productivity, standardzation of the sensors.

  • PDF