• 제목/요약/키워드: gaussian neural network

검색결과 196건 처리시간 0.03초

Fuzzy-ARTMAP based Multi-User Detection

  • Lee, Jung-Sik
    • 한국통신학회논문지
    • /
    • 제37권3A호
    • /
    • pp.172-178
    • /
    • 2012
  • This paper studies the application of a fuzzy-ARTMAP (FAM) neural network to multi-user detector (MUD) for direct sequence (DS)-code division multiple access (CDMA) system. This method shows new solution for solving the problems, such as complexity and long training, which is found when implementing the previously developed neural-basis MUDs. The proposed FAM based MUD is fast and easy to train and includes capabilities not found in other neural network approaches; a small number of parameters, no requirements for the choice of initial weights, automatic increase of hidden units, no risk of getting trapped in local minima, and the capabilities of adding new data without retraining previously trained data. In simulation studies, binary signals were generated at random in a linear channel with Gaussian noise. The performance of FAM based MUD is compared with other neural net based MUDs in terms of the bit error rate.

퍼지-뉴럴 제어기법에 의한 이동 로봇의 자율주행 제어시스템 개발 (Development of Automatic Cruise Control System of Mobile Robot Using Fuzzy-Neural Control Technique)

  • 김종수;한덕기;김영규;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.250-254
    • /
    • 2001
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

뉴럴-퍼지제어기법에 의한 두 구동휠을 갖는 이동 로봇의 자세 및 속도 제어 (The Azimuth and Velocity Control of a Movile Robot with Two Drive Wheel by Neutral-Fuzzy Control Method)

  • 한성현
    • 한국해양공학회지
    • /
    • 제11권1호
    • /
    • pp.84-95
    • /
    • 1997
  • This paper presents a new approach to the design speed and azimuth control of a mobile robot with drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the frmework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simple the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

퍼자-뉴럴 제어기법에 의한 이동형 로봇의 자율주행 제어시스템 설계 (Design of Automatic Cruise Control System of Mobile Robot Using Fuzzy-Neural Technique)

  • 김휘동
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.199-203
    • /
    • 2000
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

퍼지-뉴럴 제어기법을 이용한 이동형 로봇의 자율주행 제어시스템 개발 (Development of Automatic Cruise Control System of Mobile Robot Using Fuzzy-Neural Control Technique)

  • 김휘동;양승윤;전완수;안병국;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.130-134
    • /
    • 2000
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Channel Equalization using Fuzzy-ARTMAP Neural Network

  • Lee, Jung-Sik;Kim, Jin-Hee
    • 한국통신학회논문지
    • /
    • 제28권7C호
    • /
    • pp.705-711
    • /
    • 2003
  • This paper studies the application of a fuzzy-ARTMAP neural network to digital communications channel equalization. This approach provides new solutions for solving the problems, such as complexity and long training, which found when implementing the previously developed neural-basis equalizers. The proposed fuzzy-ARTMAP equalizer is fast and easy to train and includes capabilities not found in other neural network approaches; a small number of parameters, no requirements for the choice of initial weights, automatic increase of hidden units, no risk of getting trapped in local minima, and the capability of adding new data without retraining previously trained data. In simulation studies, binary signals were generated at random in a linear channel with Gaussian noise. The performance of the proposed equalizer is compared with other neural net basis equalizers, specifically MLP and RBF equalizers.

Design of Fuzzy-Neural Control Technique Using Automatic Cruise Control System of Mobile Robot

  • Kim, Jong-Soo;Jang, Jun-Hwa;Lee, Jin;Han, Sung-Hyung;Han, Dunk-Ki;Kim, Yong-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.69.3-69
    • /
    • 2001
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

웨이블렛 팩킷변환을 이용한 구조물의 이상상태 모니터링 (Structural Health Monitoring Using Wavelet Packet Transform)

  • 김한상;윤정방
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.619-624
    • /
    • 2004
  • In this research, the structural health monitoring method using wavelet packet analysis and artificial neural network (ANN) is developed. Wavelet packet Transform (WPT) is applied to the response acceleration of a 3 element-cantilever beam which is subjected to impulse load and Gaussian random load to decompose the response signal, then the energy of each component is calculated. The first ten largest components in magnitude among the decomposed components are selected as input to an ANN to identify the damage location and severity. This method successfully predicted the amount of damage in the structure when the structure is subjected to impulse load. However, when the beam is subjected to Gaussian random load which can be considered as ambient vibration it did not yield satisfactory results. This method is applicable to structures such as machinery gears that are subjected to repetitive loads.

  • PDF

저주파 노이즈와 BTI의 머신 러닝 모델 (Machine Learning Model for Low Frequency Noise and Bias Temperature Instability)

  • 김용우;이종환
    • 반도체디스플레이기술학회지
    • /
    • 제19권4호
    • /
    • pp.88-93
    • /
    • 2020
  • Based on the capture-emission energy (CEE) maps of CMOS devices, a physics-informed machine learning model for the bias temperature instability (BTI)-induced threshold voltage shifts and low frequency noise is presented. In order to incorporate physics theories into the machine learning model, the integration of artificial neural network (IANN) is employed for the computation of the threshold voltage shifts and low frequency noise. The model combines the computational efficiency of IANN with the optimal estimation of Gaussian mixture model (GMM) with soft clustering. It enables full lifetime prediction of BTI under various stress and recovery conditions and provides accurate prediction of the dynamic behavior of the original measured data.

신경회로망를 이용한 TCSC 적용 LQG 제어에 관한 연구 (A Study on the LQG Control of TCSC Using Neural Network)

  • 김태준;이병하
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권3호
    • /
    • pp.212-219
    • /
    • 1999
  • In this paper we present a neural network approach to select weighting matrices of Linear-Quadratic-Gaussian(LQG) controller for TCSC control. The selection of weighting matrices is usually carried out by trial and error. A weighting matrices of LQG control are selected effectively using Kohonen network. It is shown that simulation results in application of this method to three machine nine bus system are satisfactory.

  • PDF