• Title/Summary/Keyword: gaussian neural network

Search Result 196, Processing Time 0.026 seconds

Predicting the buckling load of smart multilayer columns using soft computing tools

  • Shahbazi, Yaser;Delavari, Ehsan;Chenaghlou, Mohammad Reza
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.81-98
    • /
    • 2014
  • This paper presents the elastic buckling of smart lightweight column structures integrated with a pair of surface piezoelectric layers using artificial intelligence. The finite element modeling of Smart lightweight columns is found using $ANSYS^{(R)}$ software. Then, the first buckling load of the structure is calculated using eigenvalue buckling analysis. To determine the accuracy of the present finite element analysis, a compression study is carried out with literature. Later, parametric studies for length variations, width, and thickness of the elastic core and of the piezoelectric outer layers are performed and the associated buckling load data sets for artificial intelligence are gathered. Finally, the application of soft computing-based methods including artificial neural network (ANN), fuzzy inference system (FIS), and adaptive neuro fuzzy inference system (ANFIS) were carried out. A comparative study is then made between the mentioned soft computing methods and the performance of the models is evaluated using statistic measurements. The comparison of the results reveal that, the ANFIS model with Gaussian membership function provides high accuracy on the prediction of the buckling load in smart lightweight columns, providing better predictions compared to other methods. However, the results obtained from the ANN model using the feed-forward algorithm are also accurate and reliable.

Performance Comparison of Machine Learning Based on Neural Networks and Statistical Methods for Prediction of Drifter Movement (뜰개 이동 예측을 위한 신경망 및 통계 기반 기계학습 기법의 성능 비교)

  • Lee, Chan-Jae;Kim, Gyoung-Do;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.10
    • /
    • pp.45-52
    • /
    • 2017
  • Drifter is an equipment for observing the characteristics of seawater in the ocean, and it can be used to predict effluent oil diffusion and to observe ocean currents. In this paper, we design models or the prediction of drifter trajectory using machine learning. We propose methods for estimating the trajectory of drifter using support vector regression, radial basis function network, Gaussian process, multilayer perceptron, and recurrent neural network. When the propose mothods were compared with the existing MOHID numerical model, performance was improve on three of the four cases. In particular, LSTM, the best performed method, showed the imporvement by 47.59% Future work will improve the accuracy by weighting using bagging and boosting.

Comparative Study on Illumination Compensation Performance of Retinex model and Illumination-Reflectance model (레티넥스 모델과 조명-반사율 모델의 조명 보상 성능 비교 연구)

  • Chung, Jin-Yun;Yang, Hyun-Seung
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.11
    • /
    • pp.936-941
    • /
    • 2006
  • To apply object recognition techniques to real environment, illumination compensation method should be developed. As effective illumination compensation model, we focused our attention on Retinex model and illumination-Reflectance model, implemented them, and experimented on their performance. We implemented Retinex model with Single Scale Retinex, Multi-Scale Retinex, and Retinex Neural Network and Multi-Scale Retinex Neural Network, neural network model of Retinex model. Also, we implemented illumination-Reflectance model with reflectance image calculation by calculating an illumination image by low frequency filtering in frequency domain of Discrete Cosine Transform and Wavelet Transform, and Gaussian blurring. We compare their illumination compensation performance to facial images under nine illumination directions. We also compare their performance after post processing using Principal Component Analysis(PCA). As a result, illumination Reflectance model showed better performance and their overall performance was improved when illumination compensated images were post processed by PCA.

An Elliptical Basis Function Network for Classification of Remote-Sensing Images

  • Luo, Jian-Cheng;Chen, Qiu-Xiao;Zheng, Jiang;Leung, Yee;Ma, Jiang-Hong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1326-1328
    • /
    • 2003
  • An elliptical basis function (EBF) network is proposed in this study for the classification of remotely sensed images. Though similar in structure, the EBF network differs from the well-known radial basis function (RBF) network by incorporating full covariance matrices and uses the expectation-maximization (EM) algorithm to estimate the basis functions. Since remotely sensed data often take on mixture -density distributions in the feature space, the proposed network not only possesses the advantage of the RBF mechanism but also utilizes the EM algorithm to compute the maximum likelihood estimates of the mean vectors and covariance matrices of a Gaussian mixture distribution in the training phase. Experimental results show that the EM-based EBF network is faster in training, more accurate, and simpler in structure.

  • PDF

Hyperparameter Optimization and Data Augmentation of Artificial Neural Networks for Prediction of Ammonia Emission Amount from Field-applied Manure (토양에 살포된 축산 분뇨로부터 암모니아 방출량 예측을 위한 인공신경망의 초매개변수 최적화와 데이터 증식)

  • Pyeong-Gon Jung;Young-Il Lim
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.123-141
    • /
    • 2023
  • A sufficient amount of data with quality is needed for training artificial neural networks (ANNs). However, developing ANN models with a small amount of data often appears in engineering fields. This paper presented an ANN model to improve prediction performance of the ammonia emission amount with 83 data. The ammonia emission rate included eleven inputs and two outputs (maximum ammonia loss, Nmax and time to reach half of Nmax, Km). Categorical input variables were transformed into multi-dimensional equal-distance variables, and 13 data were added into 66 training data using a generative adversarial network. Hyperparameters (number of layers, number of neurons, and activation function) of ANN were optimized using Gaussian process. Using 17 test data, the previous ANN model (Lim et al., 2007) showed the mean absolute error (MAE) of Km and Nmax to 0.0668 and 0.1860, respectively. The present ANN outperformed the previous model, reducing MAE by 38% and 56%.

Reconstruction of 3D Topography from Contour Line Data using Artificial Neural Networks (신경회로망을 이용한 등고선 데이터로부터 3차원 지형 복원)

  • Su-Sun Kim
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.3
    • /
    • pp.297-308
    • /
    • 2001
  • We propose an algorithm which can reconstruct the 3D information from geographical information. The conventional techniques, the triangular patches and the Random Fractal Midpoint Displacement (RFMD) method, etc., have often been used to reconstruct natural images. While the RFMD method using Gaussian distribution obtains good results for the symmetric images, it is not reliable on asymmetric images immanent in the nature. Our proposed algorithm employs neural networks for the RFMD method to present the asymmetrical images. By using a neural network for reconstructing the 3D images, we can utilize statistical characteristics of irregular data. We show that our algorithm has a better performance than others by the point of view on the similarity evaluation. And, it seems that our method is more efficient for the mountainous topography which is more rough and irregular.

  • PDF

Multivariate Auxiliary Channel Classification using Artificial Neural Networks for LIGO Gravitational-Wave Detector

  • Oh, Sang-Hoon;Oh, John J.;Kim, Young-Min;Lee, Chang-Hwan;Vaulin, Ruslan;Hodge, Kari;Katsavounidis, Erik;Blackburn, Lindy;Biswas, Rahul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.131.2-131.2
    • /
    • 2011
  • We present performance of artificial neural network multivariate classifier in identifying non-astrophysical origin noise transients from the gravitational wave channel of Laser Interferometer Gravitational-wave Observatory (LIGO). LIGO has successfully conducted six science runs, achieving the sensitivity as planned and producing many fruitful scientific results. It has been well observed that the detector noise is non-Gaussian and non-stationary, which results in large excess of noise transients called glitches arising from instrumental and environmental artifacts. Great efforts have been committed to reduce the glitches by tuning the detector instruments and by vetoing them but further improvement is still needed. To this end, there have been efforts to incorporate data from hundreds of auxiliary, physical and environmental channels into identifying the glitches in the gravitational wave channel. We introduce a multivariate classification method using Artificial Neural Networks (ANNs) that efficiently handles large number of variables. In this poster, we present preliminary results of the application of our ANN algorithm to data from LIGO's Science Run 4 and compare its performance with conventional vetoing method.

  • PDF

Increasing Accuracy of Stock Price Pattern Prediction through Data Augmentation for Deep Learning (데이터 증강을 통한 딥러닝 기반 주가 패턴 예측 정확도 향상 방안)

  • Kim, Youngjun;Kim, Yeojeong;Lee, Insun;Lee, Hong Joo
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.1-12
    • /
    • 2019
  • As Artificial Intelligence (AI) technology develops, it is applied to various fields such as image, voice, and text. AI has shown fine results in certain areas. Researchers have tried to predict the stock market by utilizing artificial intelligence as well. Predicting the stock market is known as one of the difficult problems since the stock market is affected by various factors such as economy and politics. In the field of AI, there are attempts to predict the ups and downs of stock price by studying stock price patterns using various machine learning techniques. This study suggest a way of predicting stock price patterns based on the Convolutional Neural Network(CNN) among machine learning techniques. CNN uses neural networks to classify images by extracting features from images through convolutional layers. Therefore, this study tries to classify candlestick images made by stock data in order to predict patterns. This study has two objectives. The first one referred as Case 1 is to predict the patterns with the images made by the same-day stock price data. The second one referred as Case 2 is to predict the next day stock price patterns with the images produced by the daily stock price data. In Case 1, data augmentation methods - random modification and Gaussian noise - are applied to generate more training data, and the generated images are put into the model to fit. Given that deep learning requires a large amount of data, this study suggests a method of data augmentation for candlestick images. Also, this study compares the accuracies of the images with Gaussian noise and different classification problems. All data in this study is collected through OpenAPI provided by DaiShin Securities. Case 1 has five different labels depending on patterns. The patterns are up with up closing, up with down closing, down with up closing, down with down closing, and staying. The images in Case 1 are created by removing the last candle(-1candle), the last two candles(-2candles), and the last three candles(-3candles) from 60 minutes, 30 minutes, 10 minutes, and 5 minutes candle charts. 60 minutes candle chart means one candle in the image has 60 minutes of information containing an open price, high price, low price, close price. Case 2 has two labels that are up and down. This study for Case 2 has generated for 60 minutes, 30 minutes, 10 minutes, and 5minutes candle charts without removing any candle. Considering the stock data, moving the candles in the images is suggested, instead of existing data augmentation techniques. How much the candles are moved is defined as the modified value. The average difference of closing prices between candles was 0.0029. Therefore, in this study, 0.003, 0.002, 0.001, 0.00025 are used for the modified value. The number of images was doubled after data augmentation. When it comes to Gaussian Noise, the mean value was 0, and the value of variance was 0.01. For both Case 1 and Case 2, the model is based on VGG-Net16 that has 16 layers. As a result, 10 minutes -1candle showed the best accuracy among 60 minutes, 30 minutes, 10 minutes, 5minutes candle charts. Thus, 10 minutes images were utilized for the rest of the experiment in Case 1. The three candles removed from the images were selected for data augmentation and application of Gaussian noise. 10 minutes -3candle resulted in 79.72% accuracy. The accuracy of the images with 0.00025 modified value and 100% changed candles was 79.92%. Applying Gaussian noise helped the accuracy to be 80.98%. According to the outcomes of Case 2, 60minutes candle charts could predict patterns of tomorrow by 82.60%. To sum up, this study is expected to contribute to further studies on the prediction of stock price patterns using images. This research provides a possible method for data augmentation of stock data.

  • PDF

Automatic Interpretation of Epileptogenic Zones in F-18-FDG Brain PET using Artificial Neural Network (인공신경회로망을 이용한 F-18-FDG 뇌 PET의 간질원인병소 자동해석)

  • 이재성;김석기;이명철;박광석;이동수
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.455-468
    • /
    • 1998
  • For the objective interpretation of cerebral metabolic patterns in epilepsy patients, we developed computer-aided classifier using artificial neural network. We studied interictal brain FDG PET scans of 257 epilepsy patients who were diagnosed as normal(n=64), L TLE (n=112), or R TLE (n=81) by visual interpretation. Automatically segmented volume of interest (VOI) was used to reliably extract the features representing patterns of cerebral metabolism. All images were spatially normalized to MNI standard PET template and smoothed with 16mm FWHM Gaussian kernel using SPM96. Mean count in cerebral region was normalized. The VOls for 34 cerebral regions were previously defined on the standard template and 17 different counts of mirrored regions to hemispheric midline were extracted from spatially normalized images. A three-layer feed-forward error back-propagation neural network classifier with 7 input nodes and 3 output nodes was used. The network was trained to interpret metabolic patterns and produce identical diagnoses with those of expert viewers. The performance of the neural network was optimized by testing with 5~40 nodes in hidden layer. Randomly selected 40 images from each group were used to train the network and the remainders were used to test the learned network. The optimized neural network gave a maximum agreement rate of 80.3% with expert viewers. It used 20 hidden nodes and was trained for 1508 epochs. Also, neural network gave agreement rates of 75~80% with 10 or 30 nodes in hidden layer. We conclude that artificial neural network performed as well as human experts and could be potentially useful as clinical decision support tool for the localization of epileptogenic zones.

  • PDF

Image-based Soft Drink Type Classification and Dietary Assessment System Using Deep Convolutional Neural Network with Transfer Learning

  • Rubaiya Hafiz;Mohammad Reduanul Haque;Aniruddha Rakshit;Amina khatun;Mohammad Shorif Uddin
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.158-168
    • /
    • 2024
  • There is hardly any person in modern times who has not taken soft drinks instead of drinking water. The rate of people taking soft drinks being surprisingly high, researchers around the world have cautioned from time to time that these drinks lead to weight gain, raise the risk of non-communicable diseases and so on. Therefore, in this work an image-based tool is developed to monitor the nutritional information of soft drinks by using deep convolutional neural network with transfer learning. At first, visual saliency, mean shift segmentation, thresholding and noise reduction technique, collectively known as 'pre-processing' are adopted to extract the location of drinks region. After removing backgrounds and segment out only the desired area from image, we impose Discrete Wavelength Transform (DWT) based resolution enhancement technique is applied to improve the quality of image. After that, transfer learning model is employed for the classification of drinks. Finally, nutrition value of each drink is estimated using Bag-of-Feature (BoF) based classification and Euclidean distance-based ratio calculation technique. To achieve this, a dataset is built with ten most consumed soft drinks in Bangladesh. These images were collected from imageNet dataset as well as internet and proposed method confirms that it has the ability to detect and recognize different types of drinks with an accuracy of 98.51%.