• 제목/요약/키워드: gaussian mixture models

검색결과 99건 처리시간 0.025초

클라우지우스 엔트로피와 적응적 가우시안 혼합 모델을 이용한 움직임 객체 검출 (Moving Object Detection using Clausius Entropy and Adaptive Gaussian Mixture Model)

  • 박종현;이귀상;또안;조완현;박순영
    • 전자공학회논문지CI
    • /
    • 제47권1호
    • /
    • pp.22-29
    • /
    • 2010
  • 비디오 시퀀스에서 움직임 있는 객체의 실시간 검출 및 추적은 스마트 감시 시스템에서 매우 중요한 요소로 분류되고 있다. 본 논문에서 우리는 움직임이 있는 객체의 검출을 위해 클라우지우스 엔트로피와 적응적 가우시안 혼합모델을 사용한 객체 검출 방법을 제안한다. 먼저, 엔트로피의 증가는 일반적으로 불안전한 조건에서 많은 엔트로피의 변화가 발생한 경우 복잡성 및 객체의 움직임이 증가함을 의미한다. 만약 순간적으로 엔트로피 변화가 큰 화소는 움직임 객체에 속한다고 고려하여 움직임 분할 특성을 적용한다. 따라서 우리는 먼저 클라우지우스 엔트로피 이론을 적용하여 엔트로피에 대한 에너지 변화량을 dense 맵으로 변환한다. 두 번째로 우리는 움직임 객체를 검출하기 위해 적응적 가우시안 혼합 모델을 적용하였다. 실험 결과에서 제안된 방법이 효율적으로 움직임이 있는 객체를 검출할 수 있었다.

가우시안 혼합모델을 이용한 공항 접근 패턴 추출 및 패턴 별 과이탈 확률 분석 (Extracting Patterns of Airport Approach Using Gaussian Mixture Models and Analyzing the Overshoot Probabilities)

  • 류재영;한성민;이학태
    • 한국항행학회논문지
    • /
    • 제27권6호
    • /
    • pp.888-896
    • /
    • 2023
  • 항공기 착륙 시에는 정해진 절차에 따라 접근이 이루어진 다음, 활주로 중심선과 정렬하여 착륙하게 된다. 하지만 공항의 상황, 주변 항공기의 상황, 또는 관제사의 지시 등에 따라 빈번한 레이더 벡터링이 일어나기 때문에, 교통 흐름을 파악하거나, 비행 안전성을 파악하기 위해서는 항공기의 접근 패턴을 인지할 필요가 있다. 또한 최종 접근 시 활주로 중심선과 정렬하는 과정에서 과이탈이 발생하는 경우가 있는 데, 이는 이후 불안정 접근 등과 같이 보다 위험한 상황을 초래할 수 있다. 본 논문에서는 클러스터링 기법을 이용하여 접근 구간에서의 항공기 궤적들의 패턴을 추출하였다. GMM (Gaussian Mixture Model)을 이용하여 김해공항 접근 항공기 궤적에 대한 클러스터링을 진행하였으며, 2019년 1년간 김해공항으로 착륙한 항공기의 데이터를 이용하였다. 클러스터 별 centroid 값을 이용하여, 총 86개의 접근 궤적 패턴을 추출하였다. 그 후 각 클러스터 내 항공기 중 최종 접근시 과이탈하는 항공기를 탐지하여 확률 분포를 계산하였다.

GMM(Gaussian Mixture Model)을 적용한 영상처리기법의 연속류도로 사고 자동검지 알고리즘 개발 (Development of the Algofithm for Gaussian Mixture Models based Traffic Accident Auto-Detection in Freeway)

  • 오주택;임재극;여태동
    • 대한교통학회지
    • /
    • 제28권3호
    • /
    • pp.169-183
    • /
    • 2010
  • 영상기반의 교통정보수집시스템은 관리 및 운영상의 한계를 보이고 있는 기존의 루프검지기의 역할을 대체하는 검지기로써의 역할 뿐만 아니라 다양한 교통류의 정보를 제공하고 관리할 수 있으며, 교통사고의 발생전과 후의 순차적인 상황을 정확히 기록하고, 이 자료를 통해 발생된 교통사고의 사고 매커니즘을 객관적이고 명확하게 조명하고 분석하는 것은 교통사고 처리에 있어서 중요한 부분을 차지함으로서, 여러 나라에서 보급 활용되고 있다. 본 논문에서는, 기존 기술들이 연속류 도로의 특성인 속도변화, 교통량 변화, 점유율 변화와 같은 교통류 흐름을 반영하여 1차 예비판단을 실시하였다. 또한, 1차 예비판단된 경우 영상추출 및 처리를 통해 최종 사고판단을 실시하게 된다. 이 때, 도로상의 다양한 환경적 변화로 인해 극복하기 어려운 차량의 객체추출, 객체분리, 추적 등의 정확성을 확보하기 위해서 계산속도와 정확도 측면에서 우수함을 보이고 있는 Adaptive GMM(Gaussian Mixture Model) 기반으로 실시하였으며, 환경적인 요인으로 인해 자주 발생하고 있는 오 검지 상황들을 효과적으로 저감시킬 수 있는 능동적이고 환경적응적인 기법을 통해 사고 최종판단을 실시하였다. 이렇게 구현된 기술의 성능을 평가하고자 중부내륙 실험도로에서 12건의 사고 모의실험을 실시하였으며, 실제 운용되고 있는 장항IC에서의 사고영상을 실시간 온라인으로 입력받아 시험하였다. 결과적으로, 검지율 93.33%, 오검지 6.7%로 높은 신뢰성을 보였다.

화자인식에서 연속밀도 은닉마코프모델의 혼합밀도 결정방법 (Gaussian Density Selection Method of CDHMM in Speaker Recognition)

  • 서창우;이주헌;임재열;이기용
    • 한국음향학회지
    • /
    • 제22권8호
    • /
    • pp.711-716
    • /
    • 2003
  • 본 논문은 연속밀도 은닉마코프모델에서 각 상태별 혼합성분 개수를 결정하는 방법을 제안한다. 지금까지의 대부분의 연구가 연속밀도 은닉마코프모델에서 화자의 스펙트럼 특성에 상관없이 각 상태별 동일한 혼합성분 개수를 적용하였다. 이런 접근방법은 많은 계산량을 요구할 뿐만 아니라, 각 상태의 특성을 무시하고 있기 때문에 각 상태별 음성신호의 정확한 모델링을 할 수 없다. 따라서 본 논문에서 제안한 연속밀도 은닉마코프모델의 파라미터 추정은 각 상태별 혼합성분에 대한 발생 확률값에 따라서 결정하였다. 또한 혼합성분의 개수를 줄이는 과정에서 신호의 상관성을 줄이고 시스템의 전체적인 안정성을 얻기 위해서 주성분 분석을 이용하였다. 제안한 방법은 기존의 은닉마코프모델에 비해서 평균 10% 작은 혼합성분 개수를 이용했을 때를 기준으로 실험하였다. 실험결과에서 혼합성분 결정만을 적용했을 때 거의 비슷한 성능을 얻을 수 있었다. 그리고 주성분 분석을 이용했을 때, 특정벡터가 16 차일 때 평균 0.35%의 성능감소가 일어났지만, 25 차에서는 평균 0.65%의 성능개선을 얻을 수 있었다.

가우시안 혼합 모델 기반의 영상 히스토그램 평활화 (Image Histogram Equalization Based on Gaussian Mixture Model)

  • 전미진;이준재
    • 한국멀티미디어학회논문지
    • /
    • 제15권6호
    • /
    • pp.748-760
    • /
    • 2012
  • 영상에서 밝기 분포가 특정한 범위에 밀집되어 있는 경우 영상에 포함된 특징을 구분하기가 어렵다. 이러한 문제를 해결하기 위해서 전역 히스토그램 평활화와 지역 히스토그램 평활화를 적용한다. 전역 히스토그램 평활화를 적용하는 경우 밝기 분포의 밀집 정도를 고려하지 않고 전체 히스토그램 정보를 사용하기 때문에 지나치게 밝아지거나 어두워질 수 있으며 부분적인 명암값을 개선시키는 것이 어렵다. 지역 히스토그램 평활화를 적용하는 경우 영상의 전체 밝기 분포를 고려하지 않고 지역적인 영상의 밝기 정보만을 사용하기 때문에 블록 간의 명암값의 차가 커져서 블록화 현상이 발생한다. 이러한 문제를 해결하기 위해 본 논문에서는 영상의 히스토그램의 영역에 가우시안 혼합 모델을 적용하여 모델링을 한 후, EM 알고리즘을 반복적으로 적용하여 각 영역의 범위를 결정한다. 그리고 분할된 영역별로 히스토그램 평활화를 적용하여 유사한 밝기값을 갖는 영역이 과도하게 평활화 되는 것을 방지하며 명암대비를 향상시킨다.

날씨·조명 판단 및 적응적 색상모델을 이용한 도로주행 영상에서의 이정표 검출 (Road Sign Detection with Weather/Illumination Classifications and Adaptive Color Models in Various Road Images)

  • 김태형;임광용;변혜란;최영우
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권11호
    • /
    • pp.521-528
    • /
    • 2015
  • 도로주행 영상에서의 객체 검출에 관한 기존의 연구들은 날씨 및 조명 상태에 따른 객체 검출의 어려움 때문에 대부분 맑은 날씨의 영상을 대상으로 연구가 진행되었다. 본 논문에서는 도로주행 영상의 다양한 날씨 및 조명 상태를 먼저 판단하고, 이를 기반으로 도로 이정표에 대한 색상모델을 설정하여 이정표 객체를 찾는 방법을 제안한다. 제안한 방법은 5종류의 도로 이미지 특징을 이용하여 맑음, 흐림, 비, 야간, 역광으로 날씨 및 조명 상태를 먼저 분류하고, 각각의 상태에서 대상 이정표 색상의 픽셀값의 범위를 추출하여 GMM(Gaussian Mixture Model)을 생성하고 이를 객체 추출에 사용한다. 날씨 및 조명이 다양하게 변하는 도로주행 영상에 제안한 방법을 적용하여 이정표 영역이 안정적으로 찾아지는 것을 확인할 수 있었다.

우리나라 연안의 기온과 수온 분포함수 추정 및 비교평가 (Estimation and Comparative Analysis on the Distribution Functions of Air and Water Temperatures in Korean Coastal Seas)

  • 조홍연;정신택
    • 한국해안·해양공학회논문집
    • /
    • 제28권3호
    • /
    • pp.171-176
    • /
    • 2016
  • 기온과 수온의 분포형태는 발생빈도의 양상을 결정하는 기본적이고 필수적인 정보이다. 또한 기후변화에 의한 기온과 수온의 장기변화 양상 파악에 유용하다. 기온과 수온의 전형적인 분포형태는 다수의 첨두(mode)를 가지는 형태로 일반적으로 널리 사용되는 정규분포로 표현하기에는 한계가 있다. 본 연구에서는 Gaussian 혼합함수와 Kernel 분포함수를 보다 기온과 수온의 보다 적합한 분포함수 형태로 제안한다. 제안된 분포함수를 우리나라 연안 기온과 수온자료를 이용하여 추정-평가한 결과, 관측 자료의 분포는 꼬리 영역에서 크게 차이를 보이고 있는 것으로 파악되었다. 높은 수온영역과 낮은 기온 영역에서 꼬리 영역이 길게 나타나고 있다. 또한 본 연구에서 제안한 분포함수 추정 및 비교는 기온과 수온의 상호 변동관계 및 장기적인 변동양상을 파악할 수 있다. 그러나 평균 기온 및 수온 그리고 정규분포 함수 형태로는 이러한 변화 양상의 파악은 크게 제한되고 있다.

비디오 셧의 감정 관련 특징에 대한 통계적 모델링 (Statistical Model for Emotional Video Shot Characterization)

  • 박현재;강행봉
    • 한국통신학회논문지
    • /
    • 제28권12C호
    • /
    • pp.1200-1208
    • /
    • 2003
  • 비디오 데이터에 존재하는 감정을 처리하는 것은 지능적인 인간과 컴퓨터와의 상호작용을 위해서 매우 중요한 일이다. 이러한 감정을 추출하기 위해서는 비디오로부터 감정에 관련된 특징들을 검출하기 위한 컴퓨팅 모델을 구축하는 것이 바람직하다. 본 논문에서는 비디오 셧에 존재하는 저급 특징들의 확률적인 분포를 이용하여 감정 이벤트 발생에 관련된 통계학적인 모델을 제안한다. 즉, 비디오 셧의 기본적인 특징을 추출하고 그 특징을 통계적으로 모델화 하여 감정을 유발하는 셧을 찾아낸다. 비디오 셧의 특징으로는 칼라, 카메라 모션 및 셧 길이의 변화를 이용한다. 이러한 특징들을 EM(Expectation Maximization) 알고리즘을 이용하여 GMM(Gaussian Mixture Model) 으로 모델링하고, 감정과 시간과의 관계를 MLE(Maximum Likelihood Estimation)를 이용하여 시간에 따른 확률분포 모델로 구성한다. 이런 두 개의 통계적인 모델들을 융합하여 베이시안 분류법을 적용하여 비디오 데이터로부터 감정에 관련된 셧을 찾아낸다.

Comparisons on Clustering Methods: Use of LMS Log Variables on Academic Courses

  • Jo, Il-Hyun;PARK, Yeonjeong;SONG, Jongwoo
    • Educational Technology International
    • /
    • 제18권2호
    • /
    • pp.159-191
    • /
    • 2017
  • Academic analytics guides university decision-makers to assign limited resources more effectively. Especially, diverse academic courses clustered by the usage patterns and levels on Learning Management System(LMS) help understanding instructors' pedagogical approach and the integration level of technologies. Further, the clustering results can contribute deciding proper range and levels of financial and technical supports. However, in spite of diverse analytic methodologies, clustering analysis methods often provide different results. The purpose of this study is to present implications by using three different clustering analysis including Gaussian Mixture Model, K-Means clustering, and Hierarchical clustering. As a case, we have clustered academic courses based on the usage levels and patterns of LMS in higher education using those three clustering techniques. In this study, 2,639 courses opened during 2013 fall semester in a large private university located in South Korea were analyzed with 13 observation variables that represent the characteristics of academic courses. The results of analysis show that the strengths and weakness of each clustering analysis and suggest that academic leaders and university staff should look into the usage levels and patterns of LMS with more elaborated view and take an integrated approach with different analytic methods for their strategic decision on development of LMS.

Computational Reduction in Keyword Spotting System Based on the Bucket Box Intersection (BBI) Algorithm

  • Lee, Kyo-Heok;Kim, Hyung-Soon
    • The Journal of the Acoustical Society of Korea
    • /
    • 제19권2E호
    • /
    • pp.27-31
    • /
    • 2000
  • Evaluating log-likelihood of Gaussian mixture density is major computational burden for the keyword spotting system using continuous HMM. In this paper, we employ the bucket box intersection (BBI) algorithm to reduce the computational complexity of keyword spotting. We make some modification in implementing BBI algorithm in order to increase the discrimination ability among the keyword models. According to our keyword spotting experiments, the modified BBI algorithm reduces 50% of log-likelihood computations without performance degradation, while the original BBI algorithm under the same condition reduces only 30% of log-likelihood computations.

  • PDF