• 제목/요약/키워드: gated module

검색결과 7건 처리시간 0.02초

Recovery of underwater images based on the attention mechanism and SOS mechanism

  • Li, Shiwen;Liu, Feng;Wei, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권8호
    • /
    • pp.2552-2570
    • /
    • 2022
  • Underwater images usually have various problems, such as the color cast of underwater images due to the attenuation of different lights in water, the darkness of image caused by the lack of light underwater, and the haze effect of underwater images because of the scattering of light. To address the above problems, the channel attention mechanism, strengthen-operate-subtract (SOS) boosting mechanism and gated fusion module are introduced in our paper, based on which, an underwater image recovery network is proposed. First, for the color cast problem of underwater images, the channel attention mechanism is incorporated in our model, which can well alleviate the color cast of underwater images. Second, as for the darkness of underwater images, the similarity between the target underwater image after dehazing and color correcting, and the image output by our model is used as the loss function, so as to increase the brightness of the underwater image. Finally, we employ the SOS boosting module to eliminate the haze effect of underwater images. Moreover, experiments were carried out to evaluate the performance of our model. The qualitative analysis results show that our method can be applied to effectively recover the underwater images, which outperformed most methods for comparison according to various criteria in the quantitative analysis.

초음파를 이용한 용접부 핸디 스캔 검사기 개발 (Developement of Ultrasonic Handy Scanner for Welding Inspection)

  • 강동명
    • 한국안전학회지
    • /
    • 제20권3호
    • /
    • pp.14-18
    • /
    • 2005
  • The ultrasonic handy scanner to be developed in this research is a nondestructive inspection equipment with various facility. The ultrasonic inspection is the technique area which apply range is increasing greatly with IT. The purpose of this research is development of a ultrasonic handy scan inspection device with the utility in a work spot. The ultrasonic handy scanner to be developed with portability in this research is able to carry out the spot inspection. It can contribute to the quality improvement, cost reduction and safety design.

다중분광밴드 위성영상의 작물재배지역 추출을 위한 Attention Gated FC-DenseNet (Attention Gated FC-DenseNet for Extracting Crop Cultivation Area by Multispectral Satellite Imagery)

  • 성선경;모준상;나상일;최재완
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.1061-1070
    • /
    • 2021
  • 본 연구에서는 국내 농업지역에 대한 작물재배지역의 분류를 위하여 FC-DenseNet 모델에 attention gate를 적용하여 딥러닝 모델의 성능을 향상시키고자 하였다. Attention gate는 특징맵의 공간/분광적 중요도에 따른 가중치를 추가적으로 학습하여 딥러닝 모델의 학습을 용이하게 하고, 모델의 성능을 향상시킬 수 있다. Attention gate를 FC-DenseNet의 스킵 연결 부분에 추가한 딥러닝 모델을 이용하여 양파 및 마늘 지역의 작물분류를 수행하였다. PlanetScope 위성영상을 이용하여 훈련자료를 제작하였으며, 훈련자료의 불균형 문제를 해결하기 위하여 전처리 과정을 적용하였다. 다양한 평가자료를 이용하여 작물재배분류 결과를 평가한 결과, 제안된 딥러닝 모델은 기존의 FC-DenseNet과 비교하여 효과적으로 양파 및 마늘 지역을 분류할 수 있는 것을 확인하였다.

Boundary-Aware Dual Attention Guided Liver Segment Segmentation Model

  • Jia, Xibin;Qian, Chen;Yang, Zhenghan;Xu, Hui;Han, Xianjun;Ren, Hao;Wu, Xinru;Ma, Boyang;Yang, Dawei;Min, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권1호
    • /
    • pp.16-37
    • /
    • 2022
  • Accurate liver segment segmentation based on radiological images is indispensable for the preoperative analysis of liver tumor resection surgery. However, most of the existing segmentation methods are not feasible to be used directly for this task due to the challenge of exact edge prediction with some tiny and slender vessels as its clinical segmentation criterion. To address this problem, we propose a novel deep learning based segmentation model, called Boundary-Aware Dual Attention Liver Segment Segmentation Model (BADA). This model can improve the segmentation accuracy of liver segments with enhancing the edges including the vessels serving as segment boundaries. In our model, the dual gated attention is proposed, which composes of a spatial attention module and a semantic attention module. The spatial attention module enhances the weights of key edge regions by concerning about the salient intensity changes, while the semantic attention amplifies the contribution of filters that can extract more discriminative feature information by weighting the significant convolution channels. Simultaneously, we build a dataset of liver segments including 59 clinic cases with dynamically contrast enhanced MRI(Magnetic Resonance Imaging) of portal vein stage, which annotated by several professional radiologists. Comparing with several state-of-the-art methods and baseline segmentation methods, we achieve the best results on this clinic liver segment segmentation dataset, where Mean Dice, Mean Sensitivity and Mean Positive Predicted Value reach 89.01%, 87.71% and 90.67%, respectively.

GRU 언어 모델을 이용한 Fuzzy-AHP 기반 영화 추천 시스템 (A Fuzzy-AHP-based Movie Recommendation System using the GRU Language Model)

  • 오재택;이상용
    • 디지털융복합연구
    • /
    • 제19권8호
    • /
    • pp.319-325
    • /
    • 2021
  • 무선 기술의 고도화 및 이동통신 기술의 인프라가 빠르게 성장함에 따라 AI 기반 플랫폼을 적용한 시스템이 사용자의 주목을 받고 있다. 특히 사용자의 취향이나 관심사 등을 이해하고, 선호하는 아이템을 추천해주는 시스템은 고도화된 전자상거래 맞춤형 서비스 및 스마트 홈 등에 적용되고 있다. 그러나 이러한 추천 시스템은 다양한 사용자들의 취향이나 관심사 등에 대한 선호도를 실시간으로 반영하기 어렵다는 문제가 있다. 본 연구에서는 이러한 문제를 해소하기 위해 GRU(Gated Recurrent Unit) 언어 모델을 이용한 Fuzzy-AHP 기반 영화 추천 시스템을 제안하였다. 본 시스템에서는 사용자의 취향이나 관심사를 실시간으로 반영하기 위해 Fuzzy-AHP를 적용하였다. 또한 대중들의 관심사 및 해당 영화의 내용을 분석하여 사용자가 선호하는 요인과 유사한 영화를 추천하기 위해 GRU 언어 모델 기반의 모델을 적용하였다. 본 추천 시스템의 성능을 검증하기 위해 학습 모듈에서 사용된 스크래핑 데이터를 이용하여 학습 모델의 적합성을 측정하였으며, LSTM(Long Short-Term Memory) 언어 모델과 Epoch 당 학습 시간을 비교하여 학습 수행 속도를 측정하였다. 그 결과 본 연구의 학습 모델의 평균 교차 검증 지수가 94.8%로 적합하다는 것을 알 수 있었으며, 학습 수행 속도가 LSTM 언어 모델보다 우수함을 확인할 수 있었다.

Convolutional GRU and Attention based Fall Detection Integrating with Human Body Keypoints and DensePose

  • Yi Zheng;Cunyi Liao;Ruifeng Xiao;Qiang He
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권9호
    • /
    • pp.2782-2804
    • /
    • 2024
  • The integration of artificial intelligence technology with medicine has rapidly evolved, with increasing demands for quality of life. However, falls remain a significant risk leading to severe injuries and fatalities, especially among the elderly. Therefore, the development and application of computer vision-based fall detection technologies have become increasingly important. In this paper, firstly, the keypoint detection algorithm ViTPose++ is used to obtain the coordinates of human body keypoints from the camera images. Human skeletal feature maps are generated from this keypoint coordinate information. Meanwhile, human dense feature maps are produced based on the DensePose algorithm. Then, these two types of feature maps are confused as dual-channel inputs for the model. The convolutional gated recurrent unit is introduced to extract the frame-to-frame relevance in the process of falling. To further integrate features across three dimensions (spatio-temporal-channel), a dual-channel fall detection algorithm based on video streams is proposed by combining the Convolutional Block Attention Module (CBAM) with the ConvGRU. Finally, experiments on the public UR Fall Detection Dataset demonstrate that the improved ConvGRU-CBAM achieves an F1 score of 92.86% and an AUC of 95.34%.

저전력 휴대용 멀티미디어를 위한 H.264 디블록킹 필터 설계 (Design of H.264 deblocking filter for the Low-Power Portable Multimedia)

  • 박상우;허정화;박상봉
    • 한국인터넷방송통신학회논문지
    • /
    • 제8권4호
    • /
    • pp.59-65
    • /
    • 2008
  • 본 논문은 휴대용 멀티미디어를 위한 저전력 H.264 디블록킹 필터를 제안하였다. H.264 디블록킹 필터는 총 8개의 입력 픽셀에 대한 각각의 필터링 연산 과정을 필요로 하며, 각 필터링 과정에서 p, q 픽셀에 대해 공통 구조를 가지고 있다. 이 때 쓰이는 공통의 필터계수와 레지스터를 공유함으로써, 적은 게이트로 구현하였다. 또한 많은 연산을 필요로 하는 필터링 연산을 특정한 조건을 이용하여, 조건에 만족하면 일부 또는 전체의 필터링을 수행하지 않음으로써 저전력의 효율적인 구조를 설계할 수 있다. 제안한 H.264 디블록킹 필터 구조는 기존 논문들의 핵심 필터링부분과 비교하여 각각 33.31%와 10.85%의 게이트 감소효과를 나타내었다. 또한 본 논문의 전체 블록은 삼성 0.35um 표준 셀 라이브러리 공정을 사용하여 구현하였으며, 최대 동작 주파수는 108MHz, 최대 처리능력은 CCIR601 형식에서 33.03 frame/s이다.

  • PDF